El control y la gestión de la inyección electrónica de combustible para los motores de encendido provocado
DOI:
https://doi.org/10.23857/dc.v7i4.2206Palabras clave:
Automotriz, motor, inyección de combustible, sensor, control del motor.Resumen
La tendencia actual es utilizar los motores de gasolina modernos utilizan cada vez mós tecnologías variables para optimizar el intercambio de gases, la preparación de la mezcla, el encendido y la combustión para diversas condiciones de funcionamiento. El objetivo de este trabajo fue caracterizar las características del control y la gestión de la inyección electrónica de combustible en los contextos de aplicación de software diferentes parómetros objetivos en torno al motor y la eficiencia del vehículo. Esto en miras de varios beneficios como el ahorro de combustible a nivel del sistema, el control óptimo de sensores y actuadores que cubren todo el rango de carga del motor. En conclusión, los sistemas de gestión requieren una serie de estrategias y nuevas aplicaciones tanto electrónicas como físicas para reducir el tiempo total de verificación con pruebas de alta calidad y de respuesta con miras de aportar a las nuevas tecnologías como vehículos híbridos, y autónomos que van en crecimiento en el mercado.Citas
Awad, O. I., Ma, X., Kamil, M., Ali, O. M., Zhang, Z., & Shuai, S. (2020). Particulate emissions from gasoline direct injection engines: A review of how current emission regulations are being met by automobile manufacturers. In Science of the Total Environment (Vol. 718). https://doi.org/10.1016/j.scitotenv.2020.137302
Bhadani, N. (2015). Concept of Virtual Engine Control Module for High Quality and Time Efficient Verification and Testing of Powertrain Engine Control Module. SAE Technical Papers, 2015-April(April). https://doi.org/10.4271/2015-01-0170
Chincholkar, S. P., & Suryawanshi, J. G. (2016). Gasoline Direct Injection: An Efficient Technology. Energy Procedia, 90, 666–672. https://doi.org/10.1016/j.egypro.2016.11.235
Dale, J. D., Checkel, M. D., & Smy, P. R. (1997). Application of high energy ignition systems to engines. Progress in Energy and Combustion Science, 23(5–6), 379–398. https://doi.org/10.1016/s0360-1285(97)00011-7
Deepak, K., & Lakshmanan, T. (2020). Design and analysis of multi fuel injector. IOP Conference Series: Materials Science and Engineering, 912(2). https://doi.org/10.1088/1757-899X/912/2/022032
Dey, S., & Mehta, N. S. (2020). Automobile pollution control using catalysis. Resources, Environment and Sustainability, 2, 100006. https://doi.org/10.1016/j.resenv.2020.100006
Duronio, F., De Vita, A., Montanaro, A., & Villante, C. (2020). Gasoline direct injection engines – A review of latest technologies and trends. Part 2. In Fuel (Vol. 265). https://doi.org/10.1016/j.fuel.2019.116947
Eriksson, L. (2007). Modeling and control of turbocharged SI and DI engines. Oil & Gas Science and Technology-Revue de l'IFP, 62(4), 523-538.
Estefanous, F., Mekhael, S., Badawy, T., Henein, N., & Zahdeh, A. (2013). Multi sensing fuel injector in turbocharged gasoline direct injection engines. ASME 2013 Internal Combustion Engine Division Fall Technical Conference, ICEF 2013, 1. https://doi.org/10.1115/ICEF2013-19091
Fu, B., & Hu, S. (2014). Automobile fuel consumption intelligent testing technology based on fuel injection pulse-width test method. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 30(18), 176–182. https://doi.org/10.3969/j.issn.1002-6819.2014.18.022
Future Automotive Electronic Systems. (2003). In Understanding Automotive Electronics (pp. 401–442). https://doi.org/10.1016/b978-075067599-4/50011-0
Guasumba-Maila, J. E., Garay-Cisneros, V. A., SoliÌs-Santamaria, J. M., & Jima-Matailo, J. C. (2021). Análisis del sistema de inyección electrónica de combustible para motor de combustión interna respecto a sus fallas y mantenimiento. Polo del Conocimiento, 6(1), 603-621.
Han, S. Bin, & Chung, Y. J. (1998). A study on the effect of operating conditions for the stability at idle. KSME International Journal, 12(4), 694–700. https://doi.org/10.1007/BF02945730
Hayashi, S., Kubota, Y., Sawa, N., & Kajitani, S. (1991). Influence of operating conditions on output, exhaust emission and combustion variation of low compression ratio methanol injection engines. SAE Technical Papers. https://doi.org/10.4271/910866
He, L., Hu, J., Zhang, S., Wu, Y., Zhu, R., Zu, L., Bao, X., Lai, Y., & Su, S. (2018). The impact from the direct injection and multi-port fuel injection technologies for gasoline vehicles on solid particle number and black carbon emissions. Applied Energy, 226, 819–826. https://doi.org/10.1016/j.apenergy.2018.06.050
Isermann, R. (2014). Engine modeling and control. Berlin: Springers Berlin Heidelberg, 1017.
Lí¼, L., Hu, J., He, L., & Shi, Y. (2021). Research Progress on Impact of Gasoline Vehicles Technology Development on Exhaust Emission. In Research of Environmental Sciences (Vol. 34, Issue 2, pp. 286–293).
Payri González, F., & Desantes Fernández, J. M. (2011). Motores de combustión interna alternativos. Editorial Universitat polití©cnica de valencia.
Rizzoni, G., & Ribbens, W. B. (1989). Crankshaft position measurement for engine testing, control, and diagnosis. IEEE Vehicular Technology Conference, 1, 423–436. https://doi.org/10.1109/vetec.1989.40109
Sanseverino, M., & Cascio, F. (1997). Model-based diagnosis for automotive repair. IEEE Expert, 12(6), 33-37.
Shivakumar, N., Antony Casmir Jayaseelan, G., Parthiban, Ahmed, & Akshay. (2020). Ignition timing and fuel injection timing control using arduino and control drivers. IOP Conference Series: Materials Science and Engineering, 993(1). https://doi.org/10.1088/1757-899X/993/1/012019
Shuai, S., Ma, X., Li, Y., Qi, Y., & Xu, H. (2018). Recent Progress in Automotive Gasoline Direct Injection Engine Technology. Automotive Innovation, 1(2), 95–113. https://doi.org/10.1007/s42154-018-0020-1
Skríºcaní½, T., Semanová, Å ., Milojević, S., & Asonja, A. (2019). New technologies improving aerodynamic properties of freight vehicles. Journal of Engineering and Applied Sciences, 4(2), 48-54.
Synák, F., & Rievaj, V. The Impact of Driving Resistances of a Vehicle on Global Pollution. 2017. In 17 th International Scientific Conference Globalization and Its Socio-Economic Consequences (pp. 2602-2609).
Synák, F., Synák, J., & Skríºcaní½, T. (2021). Assessing the addition of hydrogen and oxygen into the engine's intake air on selected vehicle features. International Journal of Hydrogen Energy.
Tanaka, A., Shimada, H., Hiraiwa, N., Arai, T., Asano, H., & Nishikawa, Y. (2011). Development of an electronic resin throttle body. SAE Technical Papers.
Tripathy, S., Sahoo, S., & Srivastava, D. K. (2017). Gasoline direct injection-challenges. In Combustion for Power Generation and Transportation: Technology, Challenges and Prospects (pp. 367–379). https://doi.org/10.1007/978-981-10-3785-6_16
Van Basshuysen, R., & Schí¤fer, F. (2016). Internal combustion engine handbook-basics, components, systems and perspectives (Vol. 345).
Yu, S., & Zheng, M. (2021). Future gasoline engine ignition: A review on advanced concepts. In International Journal of Engine Research (Vol. 22, Issue 6, pp. 1743–1775). https://doi.org/10.1177/1468087420953085
Zhang, H. (2019). Simulation modeling of sliding mode control of electronic throttle valve based on control algorithm. Nonlinear Optics Quantum Optics, 50(4), 303–314.
Publicado
Cómo citar
Número
Sección
Licencia
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.