Caracterización tribológica en combinación con varios aceites y aditivos lubricantes en sistemas automotrices
DOI:
https://doi.org/10.23857/dc.v7i4.2205Palabras clave:
Automóvil, aceites para engranajes, lubricación, transmisión manual, diferencial de vehÃculos.Resumen
Existen varios componentes en los vehículos con óreas de contacto, desgaste y, alta fricción como el motor y el tren de potencia donde es necesario sistemas de lubricación adecuados para aumentarse la vida íºtil de estos elementos. La eficiencia de la transmisión depende de varios factores desde el diseño del engranaje, el tipo de transmisión, y la formulación del aceite para engranajes. Los engranajes hioides se utilizan comíºnmente en automóviles con tracción trasera y normalmente funcionan en condiciones de alto deslizamiento y alta presión de contacto donde la capacidad de la lubricación influye positivamente. el enfoque de esta investigación permite la visualización de las condiciones de lubricación en los distintos sistemas del tren de potencia desde la parte experimental hasta la simulación de varios tipos de transmisiones y engranajes, estos componentes son analizados variables como temperatura, rugosidad y coeficientes de fricción, etc., la calidad de lubricación mejora el rendimiento de los componentes del tren de potencia o sistemas de transmisión por engranajes. Para ello, es necesaria una renovación frecuente del lubricante y una cantidad adecuada de aceite que llegue a la periferia del contacto de los dientes de los sistemas de impulsión aplicados en nuestros automóviles.Citas
antoni, g. (2014). on the mechanical friction losses occurring in automotive differential gearboxes. the scientific world journal, 2014. https://doi.org/10.1155/2014/523281
bobzin, k., brí¶gelmann, t., stahl, k., stemplinger, j. p., mayer, j., & hinterstoiíŸer, m. (2015). influence of wetting and thermophysical properties of diamond-like carbon coatings on the frictional behavior in automobile gearboxes under elasto-hydrodynamic lubrication. surface and coatings technology, 284, 290–301. https://doi.org/10.1016/j.surfcoat.2015.06.087
cho, y. s., & park, h. s. (2006). decision of lubricated friction conditions for materials of automobile transmission gear using neural network. journal of mechanical science and technology, 20(5), 583–590. https://doi.org/10.1007/bf02915975
dandan, m. a., aiman wan yahaya, w. m., samion, s., & musa, m. n. (2018). a comprehensive review on palm oil and the challenges using vegetable oil as lubricant base-stock. journal of advanced research in fluid mechanics and thermal sciences, 52(2), 182–197.
ebner, m., lohner, t., michaelis, k., hohn, b. r., & stahl, k. (2017). self-lubricating gears with oil-impregnated sintered materials. vdi berichte, 2017(2294), 1664–1675. https://doi.org/10.51202/9783181022948-17
echávarri otero, j., de la guerra ochoa, e., chacón tanarro, e., & del río lópez, b. (2017). friction coefficient in mixed lubrication: a simplified analytical approach for highly loaded non-conformal contacts. advances in mechanical engineering, 9(7). https://doi.org/10.1177/1687814017706266
errichello, r. (1990). lubrication of gears. lubrication engineering, 46(4), 231–237. https://doi.org/10.1299/jsmemag.58.432_14
fernandez-del-rincon, a., diez-ibarbia, a., & theodossiades, s. (2019). gear transmission rattle: assessment of meshing forces under hydrodynamic lubrication. applied acoustics, 144, 85–95. https://doi.org/10.1016/j.apacoust.2017.04.001
fietkau, p., baumann, a., & bertsche, b. (2012). simulation of passenger car synchronizer ring movement during rattling. proceedings of the institution of mechanical engineers, part k: journal of multi-body dynamics, 226(1). https://doi.org/10.1177/1464419311428394
fietkau, peter, & bertsche, b. (2013). influence of tribological and geometrical parameters on lubrication conditions and noise of gear transmissions. mechanism and machine theory, 69, 303–320. https://doi.org/10.1016/j.mechmachtheory.2013.06.007
hartono, e. a., golubev, m., & chernoray, v. (2013). piv study of fluid flow inside a gearbox. 10th internationnal symposium on particle image velocimetry -piv13, 810.
k, b., g, d., paul, j., s, r., & jamadade, g. (2019). analysis of automotive transmission gearbox synchronizer wear due to torsional vibration and the parameters influencing wear reduction. engineering failure analysis, 105, 427–443. https://doi.org/10.1016/j.engfailanal.2019.06.084
karagiannis, i., theodossiades, s., & rahnejat, h. (2012). on the dynamics of lubricated hypoid gears. mechanism and machine theory, 48(1), 94–120. https://doi.org/10.1016/j.mechmachtheory.2011.08.012
kumar, a., gori, y., & patil, p. p. (2020). finite element analysis-based thermo-mechanical performance study of heavy vehicle medium duty transmission gearbox (pp. 322–336). https://doi.org/10.4018/978-1-7998-4939-1.ch015
liu, h., liu, h., zhu, c., & parker, r. g. (2020). effects of lubrication on gear performance: a review. in mechanism and machine theory (vol. 145). https://doi.org/10.1016/j.mechmachtheory.2019.103701
mohammadpour, m., theodossiades, s., rahnejat, h., & saunders, t. (2014). non-newtonian mixed elastohydrodynamics of differential hypoid gears at high loads. meccanica, 49(5), 1115–1138. https://doi.org/10.1007/s11012-013-9857-x
mohammadpour, mahdi, theodossiades, s., & rahnejat, h. (2012). elastohydrodynamic lubrication of hypoid gear pairs at high loads. proceedings of the institution of mechanical engineers, part j: journal of engineering tribology, 226(3), 183–198. https://doi.org/10.1177/1350650111431027
mohammadpour, mahdi, theodossiades, s., & rahnejat, h. (2013). tribo-dynamics of differential hypoid gears. proceedings of the asme design engineering technical conference, 5. https://doi.org/10.1115/detc2013-12890
mordukhovich, g., & anderson, n. (2002). lubrication in helical gears. tribotest, 9(1), 57–68. https://doi.org/10.1002/tt.3020090107
musgrave, f. f. (1946). the development and lubrication of the automotive hypoid gear. j. inst. pet, 32, 32–44.
paouris, l., theodossiades, s., de la cruz, m., rahnejat, h., kidson, a., hunt, g., & barton, w. (2016). lubrication analysis and sub-surface stress field of an automotive differential hypoid gear pair under dynamic loading. proceedings of the institution of mechanical engineers, part c: journal of mechanical engineering science, 230(7–8), 1183–1197. https://doi.org/10.1177/0954406215608893
papay, a. g. (1975). gear lubricant additive technology. in n.l.g.i. spokesman (vol. 39, issue 6).
pei, j., han, x., & tao, y. (2020). a reliability analysis method for gear elastohydrodynamic lubrication under stochastic load. tribology transactions, 63(5), 879–890. https://doi.org/10.1080/10402004.2020.1767251
polly, j., talbot, d., kahraman, a., singh, a., & xu, h. (2017). an experimental investigation of churning power losses of a gearbox. proceedings of the asme design engineering technical conference, 10. https://doi.org/10.1115/detc201768345
powell, d. l., & barton, h. r. (1959). analytical study of surface loading and sliding velocity of automotive hypoid gears. asle transactions, 2(2), 173–183. https://doi.org/10.1080/05698195908972368
renjith, s., srinivasa, v. k., & shome, b. (2015). cfd based prediction of spin power loss of automotive differential system. sae international journal of commercial vehicles, 8(2), 460–466. https://doi.org/10.4271/2015-01-2783
rosander, p., bednarek, g., seetharaman, s., & kahraman, a. (2008). development of an efficiency model for manual transmissions. atz worldwide, 110(4), 36–43. https://doi.org/10.1007/bf03225001
russo, r., brancati, r., & rocca, e. (2009). experimental investigations about the influence of oil lubricant between teeth on the gear rattle phenomenon. journal of sound and vibration, 321(3–5), 647–661. https://doi.org/10.1016/j.jsv.2008.10.008
simon, v. v. (2020). improvements in the mixed elastohydrodynamic lubrication and in the efficiency of hypoid gears. proceedings of the institution of mechanical engineers, part j: journal of engineering tribology, 234(6), 795–810. https://doi.org/10.1177/1350650119866027
stump, b. c., zhou, y., viola, m. b., xu, h., parten, r. j., & qu, j. (2018). a rolling-sliding bench test for investigating rear axle lubrication. tribology international, 121, 450–459. https://doi.org/10.1016/j.triboint.2018.01.058
theodossiades, s., tangasawi, o., & rahnejat, h. (2007). gear teeth impacts in hydrodynamic conjunctions promoting idle gear rattle. journal of sound and vibration, 303(3–5), 632–658. https://doi.org/10.1016/j.jsv.2007.01.034
vengudusamy, b., grafl, a., novotny-farkas, f., & schí¶fmann, w. (2014). influence of surface roughness on the tribological behavior of gear oils in steel-steel contacts: part ii-mixed friction properties. tribology transactions, 57(4), 561–569. https://doi.org/10.1080/10402004.2014.884255
wienecke, d., & bartz, w. j. (2001). automobile transmission gears as tribological systems. tribology transactions, 44(3), 484–488. https://doi.org/10.1080/10402000108982485
ziegltrum, a., lohner, t., & stahl, k. (2018). tehl simulation on the influence of lubricants on the frictional losses of dlc coated gears. lubricants, 6(1). https://doi.org/10.3390/lubricants6010017
Publicado
Cómo citar
Número
Sección
Licencia
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.