Usos del Big Data en las empresas: Un instrumento de prestigio y de supervivencia hoy

Autores/as

DOI:

https://doi.org/10.23857/dc.v10i2.3843

Palabras clave:

Big Data, marketing, cadena de suministro, análisis predictivo

Resumen

El Big Data se ha convertido en un activo estratégico indispensable en el entorno empresarial actual, permitiendo a las empresas optimizar operaciones, comprender a los clientes, identificar oportunidades de negocio y anticipar tendencias del mercado. Sin embargo, su implementación conlleva desafíos relacionados con la infraestructura tecnológica, las habilidades especializadas y la protección de la privacidad de los datos.

El artículo define y conceptualiza el Big Data, resaltando sus características como volumen, velocidad y variedad, así como la importancia de la veracidad, el valor y la variabilidad de los datos. Se explora su relevancia en la toma de decisiones empresariales, analizando su evolución y aplicación en sectores como el marketing, la gestión de la cadena de suministro y la toma de decisiones estratégicas. Las aplicaciones estratégicas del Big Data incluyen análisis predictivo, personalización de productos, optimización de procesos, mejora de la experiencia del cliente y detección de fraudes.

Para implementar Big Data con éxito, es crucial seleccionar herramientas y tecnologías adecuadas, desarrollar capacidades internas para el análisis de datos e integrar sistemas con la infraestructura existente. A pesar de los desafíos que enfrenta, la adopción de Big Data puede mejorar la competitividad empresarial, la eficiencia operativa, la productividad, la innovación y la agilidad empresarial. Es fundamental contar con estrategias efectivas de gestión del cambio y fomentar una cultura empresarial orientada a la toma de decisiones basada en datos para aprovechar al máximo el potencial del Big Data en las empresas.

Biografía del autor/a

Jair Oswaldo Bedoya Benavides, Universidad Técnica Luis Vargas Torres de Esmeraldas

Universidad Técnica Luis Vargas Torres de Esmeraldas. Magister en Tecnologías de la Información. Ingeniero de Sistemas y Computación, Ecuador

Carol Dayana Góngora Saavedra, Universidad Técnica Luis Vargas Torres de Esmeraldas

Universidad Técnica Luis Vargas Torres de Esmeraldas. Master Universitario en Sistemas Integrados de Gestión de la Prevención de Riesgos Laborales, la Calidad, el Medio Ambiente y la Responsabilidad Social Corporativa. Ingeniera Química, Ecuador

Maritza Elizabeth García Lino, Universidad Técnica Luis Vargas Torres de Esmeraldas

Universidad Técnica Luis Vargas Torres de Esmeraldas. Magister en Seguridad y Salud Ocupacional. Ingeniera Química, Ecuador

Lilian Roció Ruiz Sepa, Universidad Técnica Luis Vargas Torres de Esmeraldas

Universidad Técnica Luis Vargas Torres de Esmeraldas. Master Universitario en Sistemas Integrados de Gestión de la Prevención de Riesgos Laborales, la Calidad, el Medio Ambiente y la Responsabilidad Social Corporativa. Ingeniera Química, Ecuador

Citas

Adebo, P. (2018). BIG DATA IN BUSINESS. IJARCSSE, 8, 160–162. https://doi.org/10.23956/IJARCSSE.V8I1.543

Ahmed, H., & Ismail, M. A. (2020). Towards a Novel Framework for Automatic Big Data Detection. IEEE Access, 8, 186304–186322. https://doi.org/10.1109/ACCESS.2020.3030562

Ajah, I. A., & Nweke, H. F. (2019). Big Data and Business Analytics: Trends, Platforms, Success Factors and Applications. Big Data Cogn. Comput., 3, 32. https://doi.org/10.3390/BDCC3020032

Almgerbi, M., De Mauro, A., Kahlawi, A., & Poggioni, V. (2021). A Systematic Review of Data Analytics Job Requirements and Online-Courses. Journal of Computer Information Systems, 62(3), 422–434. https://doi.org/10.1080/08874417.2021.1971579

Alshamaila, Y., Papagiannidis, S., & Li, F. (2013). Cloud computing adoption by SMEs in the north east of England: A multi-perspective framework. Journal of Enterprise Information Management, 26(3), 250–275. https://doi.org/10.1108/17410391311325225

Anmaç, S. (2023). A COMPARISON OF PRODUCT PERSONALIZATION AND PRODUCT CUSTOMIZATION: A CONCEPTUAL FRAMEWORK. Turkish Business Journal. https://doi.org/10.51727/tbj.1306824

Ardagna, C., Bellandi, V., Bezzi, M., Ceravolo, P., Damiani, E., & Hébert, C. (2018). Model-Based Big Data Analytics-as-a-Service: Take Big Data to the Next Level. IEEE Transactions on Services Computing, 14, 516–529. https://doi.org/10.1109/TSC.2018.2816941

Arena, F., & Pau, G. (2020). An overview of big data analysis. Bulletin of Electrical Engineering and Informatics, 9, 1646–1653. https://doi.org/10.11591/EEI.V9I4.2359

B?nic?, L., & Hagiu, A. (2015). BIG DATA IN BUSINESS ENVIRONMENT. Scientific Bulletin – Economic Sciences, 14, 79–86. https://consensus.app/papers/data-business-environment-b?nic?/57a5bbd9c8fd589192982c40ea447bd9

Baquero, A. V., Palacios, R. C., & Molloy, O. (2013). Business Process Analytics Using a Big Data Approach. IT Professional, 15, 29–35. https://doi.org/10.1109/MITP.2013.60

Bihl, T. J., Young, W. A., & Weckman, G. (2016). Defining, Understanding, and Addressing Big Data. International Journal of Business Analytics, 3, 1–32. https://doi.org/10.4018/IJBAN.2016040101

Blackburn, R., Lurz, K., Priese, B., Göb, R., & Darkow, I.-L. (2015). A predictive analytics approach for demand forecasting in the process industry. Int. Trans. Oper. Res., 22, 407–428. https://doi.org/10.1111/itor.12122

De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics. AIP Conference Proceedings, 1644, 97–104. https://doi.org/10.1063/1.4907823

Desai, A., Mathkar, M., Nisar, M., & Thampi, G. (2022). Customizing Insurance Product Based On Customer Data Leveraging Learning Algorithms. 2022 IEEE Fourth International Conference on Advances in Electronics, Computers and Communications (ICAECC), 1–7. https://doi.org/10.1109/ICAECC54045.2022.9716594

Di Francesco, P., Malavolta, I., & Lago, P. (2017). Research on architecting microservices: trends, focus, and potential for industrial adoption. Proceedings of the IEEE International Conference on Software Architecture, 21–30. https://doi.org/10.1109/ICSA.2017.10

Do?an, A., & Ar?, E. S. (2022). Big Data and Enterprise Applications. In Research Anthology on Big Data Analytics, Architectures, and Applications. https://doi.org/10.4018/978-1-6684-3662-2.ch039

Frizzo-Barker, J., Chow-White, P. A., Mozafari, M., & Ha, D. (2016). An empirical study of the rise of big data in business scholarship. International Journal of Information Management, 36, 403–413. https://doi.org/10.1016/J.IJINFOMGT.2016.01.006

George, G., Haas, M., & Pentland, A. (2014). Big Data and Management. Academy of Management Journal, 57, 321–326. https://doi.org/10.5465/AMJ.2014.4002

Gröger, C., Schwarz, H., & Mitschang, B. (2014). Prescriptive Analytics for Recommendation-Based Business Process Optimization. 25–37. https://doi.org/10.1007/978-3-319-06695-0_3

Grover, P., & Kar, A. (2017). Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature. Global Journal of Flexible Systems Management, 18, 203–229. https://doi.org/10.1007/s40171-017-0159-3

Kanchana, R., & ShashikumarD., R. (2017). Big Data: Tools and Applications. International Journal of Advance Research, Ideas and Innovations in Technology, 3. https://consensus.app/papers/data-tools-applications-kanchana/cdbedd1a0d9f547b88572dd52b32634b

Kettunen, P., Ämmälä, M., & Partanen, J. (2015). Towards Predictable B2B Customer Satisfaction and Experience Management with Continuous Improvement Assets and Rich Feedback. 205–211. https://doi.org/10.1007/978-3-319-18612-2_18

Kotter, J. P. (1996). Leading change: Why transformation efforts fail. Harvard Business Review, 73(2), 59–67. https://consensus.app/papers/leading-change-why-transformation-efforts-fail-kotter/fe4521f505a7e0bc14859ed7c73601c1

Kshetri, N. (2014). Big data’s impact on privacy, security and consumer welfare. Telecommunications Policy, 38(11), 1134–1145. https://doi.org/10.1016/j.telpol.2014.10.002

Lehmann, D., Fekete, D., & Vossen, G. (2017). Technology Selection for Big Data and Analytical Applications. Open Journal of Big Data, 3, 1–25. https://consensus.app/papers/technology-selection-data-analytical-applications-lehmann/603a5820ac725418bd48d4de05b20ae8

Lishchynska, L., & Dobrovolska, N. (2022). Prospective Software Tools for Data Analysis in Business. Herald of Khmelnytskyi National University. https://doi.org/10.31891/2307-5732-2022-305-1-78-79

McAfee, A. P., & Brynjolfsson, E. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 60–66, 68, 128. https://consensus.app/papers/data-management-revolution-mcafee/c9b86d405c6456ed8a56d259fd033c2f

Popescu, C. (2018). Improvements in business operations and customer experience through data science and Artificial Intelligence. Proceedings of the International Conference on Business Excellence, 12, 804–815. https://doi.org/10.2478/picbe-2018-0072

Rana, R., Paliwal, N., & Singhal, A. (2023). A Study of Business Insight Tool Using Big Data Analytics. 2023 International Conference on Computational Intelligence, Communication Technology and Networking (CICTN), 617–624. https://doi.org/10.1109/cictn57981.2023.10140726

Raut, R. D., Mangla, S., Narwane, V., Gardas, B. B., Priyadarshinee, P., & Narkhede, B. (2019). Linking Big Data Analytics and Operational Sustainability Practices for Sustainable Business Management. Journal of Cleaner Production. https://doi.org/10.1016/J.JCLEPRO.2019.03.181

Riahi, Y., & Riahi, S. (2018). Big Data and Big Data Analytics: concepts, types and technologies. International Journal of Research and Engineering, 5. https://doi.org/10.21276/IJRE.2018.5.9.5

Ruzgas, T., & Bagdonavi?ien?, J. D. (2017). Business Intelligence for Big Data Analytics. International Journal of Computer Applications Technology and Research, 6, 1–8. https://doi.org/10.7753/IJCATR0601.1001

Sadeghi, M., Zamanifar, K., & Fathi, M. (2017). An approach to interoperability of big data frameworks using semantic web technologies. Future Generation Computer Systems, 67, 29–42. https://doi.org/10.1016/j.future.2016.11.012

Sahal, R., Breslin, J., & Ali, M. (2020). Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case. Journal of Manufacturing Systems, 54, 138–151. https://doi.org/10.1016/j.jmsy.2019.11.004

Sandoval, L. (2015). Design of Business Intelligence Applications Using Big Data Technology. 2015 IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), 1–6. https://doi.org/10.1109/CONCAPAN.2015.7428454

Sun, Y., Shi, Y., & Zhang, Z. (2019). Finance Big Data: Management, Analysis, and Applications. International Journal of Electronic Commerce, 23, 11–29. https://doi.org/10.1080/10864415.2018.1512270

Vandure, S. L., Ramannavar, M. M., & Sidnal, N. (2014). Trend Projection using Predictive Analytics. International Journal of Computer Applications, 97, 39–45. https://doi.org/10.5120/17119-7807

Wilson, H., Macdonald, E. K., & Konus, U. (2012). Better customer insight - in real time?: a new tool radically improves marketing research. Harvard Business Review, 2012, 102–108. https://consensus.app/papers/better-customer-time-tool-radically-improves-marketing-wilson/ebbd3aab02bb5a7fa44355d578c4dfcc

Xiang, W., Deng, H., & Peng, S. (2022). Application of Big Data Technology in Business Management. Proceedings of the SPIE, 12331, 123315H-123315H – 5. https://doi.org/10.1117/12.2653082

Yin, S., & Kaynak, O. (2015). Big Data for Modern Industry: Challenges and Trends [Point of View]. Proceedings of the IEEE, 103, 143–146. https://doi.org/10.1109/JPROC.2015.2388958.

Descargas

Publicado

2024-05-24

Cómo citar

Jair Oswaldo Bedoya Benavides, Carol Dayana Góngora Saavedra, Maritza Elizabeth García Lino, & Lilian Roció Ruiz Sepa. (2024). Usos del Big Data en las empresas: Un instrumento de prestigio y de supervivencia hoy. Dominio De Las Ciencias, 10(2), 1024–1042. https://doi.org/10.23857/dc.v10i2.3843

Número

Sección

Artí­culos Cientí­ficos

Artículos similares

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a