A Scoping Review on Parametric model of Wind Generators
DOI:
https://doi.org/10.23857/dc.v10i1.3740Palabras clave:
Mathematical Model, Wind Farms, Database, CFD, Wind generatorsResumen
Parametric modeling for the installation of a second field of Wind Generators in the Villonaco Loja sector is based on the application of a set of general purpose and public license software, computational fluid dynamics (CFD). To generate mathematical models of the wind parameters of the Villonaco Loja sector, using the databases provided by CELEC.
This work aims to carry out an art study on the information existing in the simulation of airflow, characterized by speed, pressure, tempera- ture, as well as work carried out in the identification of suitable areas for the installation of wind farms, energy production and the application of mathematical models in sectors located in different countries. The bi- bliographic review focused on open access databases using the PRISMA methodology, 50 articles were obtained meeting exclusion and inclusion criteria, however, a final stage was applied where the research questions were obtaining more detailed and representative answers, achieving arrive at a database of 40 articles, this being the most appropriate information for the development of the research.
Citas
Cu´neo, Lucila Mercedes; Cerne, Silvia Bibiana; Llano, Mar´?a Paula: Soluci´on Num´erica de una Ecuaci´on del Tipo Advecci´on-Difusi´onPreliminary description of the average monthly wind speed and direction in Trelew.Scopus 1 (25), 66–80(2019)
Reinoso-Avecillas, F.,Jara-Cobos, N.,Gomez-del Pino, P. :Characterization of Air Flow in Hills Emplacement of Wind Farms .Ingenius 1 (15), 18–125(2016)
T. Burton, D. Sharpe, N. Jenkins y B. Ervin, WIND ENERGY, England: John Wiley Sons, Ltd, 2001. Scopus 2(5), 5–21 (2017)
Santamar´?a-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C. , Wind speed fore- casting for wind farms: A method based on support vector regression 2(5), 1–18 (2016)
O. Carvente Mun˜oz, A. Borges Pool, M. Palmero Boj´oquez, B. Gonz´alez Carrillo,
E. Ord´on˜ez L´opez, M. P´erez Cort´es y H. Valdivieso Sogbi, ‹ Predicci´on de velocida- des y potencial e´olico para alturas superiores,› Universidad Aut´onoma de Yucat´an M´exico. 2(5), 85–90 (2015)
De Bortoli, M., Carnavasio, O: Analysis of Atmospheric Wind Speeds Extreme Annual Half Hour through Probabilistic Analysis of Short Records. Scopus 2(5), 89–210 (2018)
Cotez, A.Olivares, BO.:Systematization of the calculation of the standardized pre- cipitation index as a methodology to generate meteorological drought informa- tion.ScopusIngenier´?a 1 (19), 209–223(2020)
De La Cruz, J., Valencia, G., Vanegas, M.: Soluci´on Statistical study of wind speed and direction in the departments of Atl´antico and Bolivar in Colombia .Scopus 2 (26), 319–328(2018)
Paul, R.,Dalui, SK: Shape optimization to reduce wind pressure on the surfaces of a rectangular building with horizontal limbs.Scopus (), 1–61(2021)
Quin˜onez Choquecota, Jos´e; Huanca Callata, Elmer; Holguino Huarza, Antonio: Characterization of the wind resource in the city of Juliaca.Springer (), 57–68(2019)
Manero, Jaume; B´ejar, Javier; Cort´es, Ulises.: Wind Energy Forecasting with Neu- ral Networks: A Literature Review.Springer 6 (1), 1085–1098(2018)
Dwivedi, Yagya Dutta; Nukala, Vasishta Bhargava; Maddula, Satya Prasad; Nair, Kiran.: Prediction of Atmospheric Turbulence Characteristics for Surface Boundary Layer using Empirical Spectral Methods.Springer (), 63–77(2021)
Flores-Vel´azquez, Jorge; Vega-Garc´?a, Manuel: Regional management of the en- vironment in a zenith greenhouse with computational fluid dynamics. 2 (86), 3– 20(2019)
MonikiFerreira, AlexandreSantos, PauloLucio; Vega-Garc´?a, Manuel: Short-term forecast of wind speed through mathematical models. 2 (86), 1172–1184(2019)
Golnary, F. y Moradi, H.Dynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speed. 2 (86), 566– 585(2019)
Zhang, Y., Zhao, Y., Kong, C., Chen, B. A new prediction method based on VMD- PRBF-ARMA-E model considering wind speed characteristic. 2 (86), 112254.(2020)
Liu, Z., Jiang, P., Zhang, L. y Niu, X.A combined forecasting model for time series: Application to short-term wind speed forecasting. 2 (86), 114137.(2020)
Chao Chen, Hui Liu.Dynamic ensemble wind speed prediction model based on hybrid deep reinforcement learning. 2 (86), 101290.(2021)
Minghui Yin, Zhiqiang Yang, Yan Xu, Jiankun Liu, Lianjun Zhou, YunZou. Ae-
rodynamic optimization for variable-speed wind turbines based on wind energy cap- ture efficiency. 2 (86), 508–521(2018)
ZhongdaTian, Hao Li, FeihongLi. A combination forecasting model of wind speed
based on decomposition. 2 (86), 1217–1233(2018)
De La Cruz, J., Valencia, G., Vanegas, M. Soluci´on Statistical study of wind speed and direction in the departments of Atlantico and Bolivar in Colombia. 2 (86), 319–328(2018)
Liu,X.,Lai, X., Zou, J.A New MCP Method of Wind Speed Temporal Interpolation
and Extrapolation Considering Wind Speed Mixed Uncertainty. 2 (86), 1231(2017)
Sorman, AU., Kahy,E.Climate change impacts on meteorological drought using SPI and SPEI: case study of Ankara, Turkey. 2 (86), 254–268(2020)
Blenkinsop, S.,Fowler, HJ.Changes in drought frequency, severity and duration for
the British Isles projected by the PRUDENCE regional climate models. 2 (86), 50–71(2017)
G´omez Rodr´?guez, Tomas; Cortazar Mart´?nez, Adriana; Zambrano Reyes, Adria-
na.Technical and financial analysis of the energy potential of the wind to generate electricity: the case of Apan, Hidalgo 2 (86), 263–276(2020)
Lubbe, F.; Harms, T.; Maritz, J.A statistical exploration of interval-deficient wind
speed data for application to wind power assessments : the case of Apan, Hidalgo
(86), 13–25(2019)
Bhargava, Vasishta; Samala, Rahul. Acoustic Emissions from Wind Turbine Bla- des. 2 (86) (2019)
Khosravi, A., Machado, L., Nunes, R. O. Time-series prediction of wind speed
using machine learning algorithms: A case study Osorio wind farm, Brazil. 2 (86), 550–566(2018)
International Journal of Electrical Power Energy Systems.Wind speed frequency
distribution modeling and wind energy resource assessment based on polynomial regression model 2 (86), 106964(2021)
FuadNoman, GamalAlkawsi, Ammar AhmedAlkahtani, Ali Q.Al-Shetwi, Sieh-
Kiong Tiong, NasserAlalwan, , Ahmed IbrahimAlzahrani.Multistep short-term wind speed prediction using nonlinear auto-regressive neural network with exogenous va- riable selection. 2 (86), 1221–1229(2018)
Khosravi, A., Koury, R. N. N., Machado, L., Pabon, J. J. G. Prediction of wind
speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system 2 (86), 146–160(2018)
Junmei Jia, Zaizai Yan, Xiaoyan An. A new distribution for modeling the wind speed data in Inner Mongolia of China 2 (86), 1979–1991(2020)
CihangirKan, YilserDevrim, SerkanEryilmaz.On the theoretical distribution of the wind farm power when there is a correlation between wind speed and wind turbine availability. 2 (86), 107115(2020)
Tariq Ullah, Adeel Javed, Ali Abdullah, Majid Ali. Computational evaluation of an optimum leading-edge slat deflection angle for dynamic stall control in a novel urban-scale vertical axis wind turbine for low wind speed 2 (86), 100748(2020)
Sedaghat, A., Hassanzadeh, A., Jamali, J., Mostafaeipour, A. y Chen, WH .Determination of rated wind speed for maximum annual energy production of variable speed wind turbines. 2 (86), 781–789(2017)
Song, D., Yang, J., Dong, M. y Joo, YH .Model predictive control with finite control set for variable-speed wind turbines. 2 (86), 564–572(2017)
Lazzu´s,J., Salfate, I. Long-term prediction of wind speed in La Serena city (Chile) using hybrid neural network - particle swarm algorithm. 2 (86), 29–35(2017)
Olivares, BO., Zingaretti, ML. Application of multivariate methods for the characterization of meteorological drought periods in Venezuela. 2 (86),(2018)
Otero, F., Cerne, B.,Campetella, C.Preliminary wind speed study in San Julian in reference to wind power generation. 2 (86),(2017)
Loussa,S., Guerri, O.:Effects of local ambient air temperaturas on wind park performance: case of the kaberten wind park.scopus 2 (86), 388–396(2009)
Aroche, R.,P´erez, C .:Spectral power of the vertical wind velocity in tropical convection clouds over Cuba.scopus 2 (8), 65 –80 (2009)
Lazzu´s,J., Salfate, I.:Long-term prediction of wind speed in La Serena city (Chile) using hybrid neural network - particle swarm algorithm.scopus 1 (21), 29 –37 (2017)
Olivares, BO., Zingaretti, ML.:Application of multivariate methods for the charac- terization of meteorological drought periods in Venezuela.scopus 1 (48),172 –192 (2017)
Abdi, H., Williams,Lj.:STATIS and DISTATIS: Optimum multitable principal component analysis and three way metric multidimensional scaling.scopus 2 (4),124–167 (2012)
Otero, F., Cerne, B.,Campetella, C.,:Preliminary wind speed study in San Julian in reference to wind power generation.scopus 2 (42),59 –79 (2017)
Cotez, A.Olivares, BO,:Systematization of the calculation of the standardized precipitation index as a methodology to generate meteorological drought informa- tion.scopus 3 (36),209–223 (2019)
Liu,C., Yang, C., Yang, Q., Qang, J.,:Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspira tion index (SPEI) in Sichuan Province, China.scopus 1 (11),128– (2021)
Sorman, AU., Kahy,E.,:Climate change impacts on meteorological drought using SPI and SPEI: case study of Ankara, Turkey.scopus 2 (65),254–268 (2020)
Blenkinsop, S.,Fowler, HJ,:Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models.scopus 2 (342),50–71 (2017)
Allen, sen˜or., Stott, PA.,Mitchell, JFB.,Schnur, R.,Delworth, TL.: Quantifying the uncertainty in forecasts of anthropogenic climate change.scopus 6804 (407),617– 620 (2000)
Jiang, X., Chen, Z., Li, H.: Numerical investigation on the interaction of cylinder and shockwave based on the immersed boundary method.scopus 3 (23),317–320 (2009)
Calhoun, D.,LeVeque, R.: A cartesian grid finite-volume method for the advection diffusion equation in irregular geometries.scopus 1 (157),143–180 (2000)
Almgren, COMO.,Bell, JB.,Colella, P.,Marthaler, T:A Cartesian grid projection method for the incompressible euler equations in complex geometries.scopus 5 (18),1289–1309 (1997)
Almgren, A.S.,Bell, J.B.,Szymczak, W.G: A numerical method for the incompressible Navier-Stokes equations based on an approximate projection.scopus 2 (17),358– 369 (1996)
Bell, J.B.,Marcus, D.L:A second-order projection method for variable-density flows.scopus 2 (101),334–348 (1992)
Paul, R.,Dalui, SK:Shape optimization to reduce wind pressure on the surfaces of a rectangular building with horizontal limbs.scopus 1 (65),134–149 (2021)
Liang, S-.,Li, QS .,Liu, S.,Zhang, L.,Gu, M.:Torsional dynamic wind loads on rectangular tall buildings.scopus 1 (26),129–137 (2004)
Babanezhad, M.,Behroyan, I.,Nakhjiri, AT .,Marjani, A.,Rezakazemi, M.,Heydarinasab, A.:Investigation on performance of particle swarm optimi- zation (PSO) algorithm based fuzzy inference system (PSOFIS) in a combination of CFD modeling for prediction of fluid flow.scopus 1 (11),125–489 (2021)
Wang, T.,Wang, J.:Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model.scopus 24 (62),7107–7118 (2007)
Gozawa, M.,Takamura, Y.,Aoki, T.Iwasaki, K.,Inatani, MComputational fluid dynamics (CFD) simulation analysis on retinal gas cover rates using computational eye models.scopus 1 (11),–4937 (2021)
Schabowicz, K.,Zawi´slak, L .:Numerical Comparison of Thermal Behaviour bet- ween Ventilated Facades.scopus 4 (42),297–305 (2021)
Chen, Q.:Comparison of different k- models for indoor air flow computations.scopus 3 (28),353–369 (1995)
Lavado, BE.,Spalding, DB.:The numerical computation of turbulent flows.scopus 2 (3),269–289 (1995)
Babanezhad, M.,Behroyan, I.,Marjani, A.,Shirazian, S.:Pressure and temperature predictions of Al2O3/water nanofluid flow in a porous pipe for different nanoparti- cles volume fractions: combinatio1 of CFD and ACOFIS.scopus 2 (11),–60 (2021)
Mahanthesh, B.,Shashikumar, NS.,Lorenzini, G.:Heat transfer enhancement due to nanoparticles, magnetic field, thermal and exponential space-dependent heat source aspects in nanoliquid flow past a stretchable spinning disk.scopus 1 (11),–1 (2020)
Rashidi, MM.,Ali, M.,Freidoonimehr, N., Nazari, F.:Parametric analysis and opti- mization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm.scopus 15 (55),497–510 (2013)
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Geoconda Marisela Velasco Castelo, Fabian Bastidas Alarcón, Lidia Castro Cepeda, Christian Giovanni Flores Arévalo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.