Estudio de la integración de IoT con sistemas de generación fotovoltaica OFF-GRID

Autores/as

DOI:

https://doi.org/10.23857/dc.v10i1.3701

Palabras clave:

Internet de las Cosas (IoT), Sistemas fotovoltaicos, OFF GRID, Eficiencia energética, Mantenimiento preventivo

Resumen

El estudio explora la integración de tecnologías del Internet de las Cosas (IoT) en sistemas fotovoltaicos fuera de red (“OFF-GRID”), mediante revisión de literatura en diversas bases de datos y con esto analizar estudios de casos en Finlandia, España, México, Indonesia e Italia. La revisión bibliográfica destaca beneficios potenciales como detección temprana de fallas (65% de trabajos) y mejoras de eficiencia (52%), pero también problemas persistentes de escalabilidad (45%) y costos elevados (33%). Los hallazgos revelan potenciales mejoras en eficiencia energética, mantenimiento preventivo y mejoramiento de operación; pero también problemas persistentes de escalabilidad, costos y ciberseguridad que impiden mayor adopción. Además, tomando en consideración la electrificación rural en países en desarrollo, se plantea un prototipo IoT sobre una instalación solar en una comunidad Kichwa amazónica de Ecuador, evaluando tecnologías de conectividad, sensores y modelos de gestión apropiados a esta localización remota y como poder utilizar esto en el contexto ecuatoriano.

Citas

L. Li et al., “Review and outlook on the international renewable energy development,” Energy and Built Environment, vol. 3, no. 2, pp. 139–157, Apr. 2022, doi: 10.1016/J.ENBENV.2020.12.002.

M. Tawalbeh, A. Al-Othman, F. Kafiah, E. Abdelsalam, F. Almomani, and M. Alkasrawi, “Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook,” Science of The Total Environment, vol. 759, p. 143528, Mar. 2021, doi: 10.1016/J.SCITOTENV.2020.143528.

E. Semshchikov, M. Negnevitsky, J. Hamilton, and X. Wang, “Cost-Efficient Strategy for High Renewable Energy Penetration in Isolated Power Systems,” IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 3719–3728, Sep. 2020, doi: 10.1109/TPWRS.2020.2975236.

K. Hasan, S. B. Yousuf, M. S. H. K. Tushar, B. K. Das, P. Das, and M. S. Islam, “Effects of different environmental and operational factors on the PV performance: A comprehensive review,” Energy Sci Eng, vol. 10, no. 2, pp. 656–675, Feb. 2022, doi: 10.1002/ESE3.1043.

J. L. García, F. Jurado, and V. Larco, “Review and resource assessment, solar energy in different region in Ecuador,” E3S Web of Conferences, vol. 80, p. 01003, Jan. 2019, doi: 10.1051/E3SCONF/20198001003.

G. Sebastián et al., “Evaluación de la actualidad de los sistemas fotovoltaicos en Ecuador: avances, desafíos y perspectivas,” Ciencia Latina Revista Científica Multidisciplinar, vol. 7, no. 3, pp. 9493–9509, Jul. 2023, doi: 10.37811/CL_RCM.V7I3.6835.

A. Cuenca, C. Oña, I. Suquillo, and H. Miniguano, “Metodología de Diseño de Sistemas Aislados de Energía Solar Fotovoltaica para Áreas Rurales en Ecuador,” Revista Técnica “energía,” vol. 20, no. 1, pp. 43–51, Jul. 2023, doi: 10.37116/REVISTAENERGIA.V20.N1.2023.537.

A. Mellit, A. Hamied, V. Lughi, and A. M. Pavan, “A Low-Cost Monitoring and Fault Detection System for Stand-Alone Photovoltaic Systems Using IoT Technique,” Lecture Notes in Electrical Engineering, vol. 604, pp. 349–358, 2020, doi: 10.1007/978-3-030-37161-6_26/COVER.

“IoT for Smart Cities: Use Cases and Implementation Strategies.” Accessed: Dec. 05, 2023. [Online]. Available: https://www.scnsoft.com/blog/iot-for-smart-city-use-cases-approaches-outcomes

A. E. Labrador Rivas and T. Abrão, “Faults in smart grid systems: Monitoring, detection and classification,” Electric Power Systems Research, vol. 189, p. 106602, Dec. 2020, doi: 10.1016/J.EPSR.2020.106602.

G. Boubakr, F. Gu, L. Farhan, and A. Ball, “Enhancing Virtual Real-Time Monitoring of Photovoltaic Power Systems Based on the Internet of Things,” Electronics 2022, Vol. 11, Page 2469, vol. 11, no. 15, p. 2469, Aug. 2022, doi: 10.3390/ELECTRONICS11152469.

A. S. Spanias, “Solar energy management as an Internet of Things (IoT) application,” 2017 8th International Conference on Information, Intelligence, Systems and Applications, IISA 2017, vol. 2018-January, pp. 1–4, Jul. 2017, doi: 10.1109/IISA.2017.8316460.

O. Chieochan, A. Saokaew, and E. Boonchieng, “Internet of things (IOT) for smart solar energy: A case study of the smart farm at Maejo University,” 2017 International Conference on Control, Automation and Information Sciences, ICCAIS 2017, vol. 2017-January, pp. 262–267, Dec. 2017, doi: 10.1109/ICCAIS.2017.8217588.

R. K. Kodali and J. John, “Smart Monitoring of Solar Panels Using AWS,” 2020 International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control, PARC 2020, pp. 422–427, Feb. 2020, doi: 10.1109/PARC49193.2020.236645.

J. Guamán, D. Guevara, C. Vargas, A. Ríos, and R. Nogales, “Solar Manager: Acquisition, Treatment and Isolated Photovoltaic System Information Visualization Cloud Platform,” International Journal of Renewable Energy Research (IJRER), vol. 7, no. 1, pp. 214–223, Mar. 2017, doi: 10.20508/IJRER.V7I1.5334.G7003.

G. Khambalkar, A. Wasurkar, R. Jibhakate, S. Dongare, and V. Chikhalonde, “Solar Power Monitaring System Using IOT Syatem,” 2023, Accessed: Dec. 05, 2023. [Online]. Available: www.ijcrt.org

S. Deshmukh, P. D. L. Bhuyar, and A. T. Jadhav, “Review on IoT Based Smart Solar Photovoltaic Plant Remote Monitoring and Control Unit”.

B. Shrihariprasath and V. Rathinasabapathy, “A smart IoT system for monitoring solar PV power conditioning unit,” IEEE WCTFTR 2016 - Proceedings of 2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare, Oct. 2016, doi: 10.1109/STARTUP.2016.7583930.

A. M. Eltamaly, M. A. Alotaibi, A. I. Alolah, and M. A. Ahmed, “IoT-Based Hybrid Renewable Energy System for Smart Campus,” Sustainability 2021, Vol. 13, Page 8555, vol. 13, no. 15, p. 8555, Jul. 2021, doi: 10.3390/SU13158555.

S. Adhya, D. Saha, A. Das, J. Jana, and H. Saha, “An IoT based smart solar photovoltaic remote monitoring and control unit,” 2016 2nd International Conference on Control, Instrumentation, Energy and Communication, CIEC 2016, pp. 432–436, Jul. 2016, doi: 10.1109/CIEC.2016.7513793.

A. M. Elberry, J. Thakur, and J. Veysey, “Seasonal hydrogen storage for sustainable renewable energy integration in the electricity sector: A case study of Finland,” J EnergyStorage, vol. 44, Dec. 2021, doi: 10.1016/J.EST.2021.103474.

J. Tuuf, H. Lindén, S. Lieskoski, and M. Björklund-Sänkiaho, “Development of a nano-size off-grid energy system using renewables and IoT technologies at the Meteoria visitor center: A Finnish case study,” Heliyon, vol. 9, no. 11, Nov. 2023, doi: 10.1016/J.HELIYON.2023.E21473.

T. A. Dos Santos, F. G. de Freitas, D. L. C. Gonçalves, and L. M. Fernández-Ramírez, “Design and validation of IoT measurement system for photovoltaic generation,” Ingenius, vol. 2022, no. 28, pp. 44–52, Aug. 2022, doi: 10.17163/INGS.N28.2022.04.

C. A. Nallolla and P. Vijayapriya, “Optimal Design of a Hybrid Off-Grid Renewable Energy System Using Techno-Economic and Sensitivity Analysis for a Rural Remote Location,” Sustainability 2022, Vol. 14, Page 15393, vol. 14, no. 22, p. 15393, Nov. 2022, doi: 10.3390/SU142215393.

“Real-Time Data Acquisition of Solar Panel Using Arduino | Arduino Project Hub.” Accessed: Dec. 06, 2023. [Online]. Available: https://projecthub.arduino.cc/Aboubakr_Elhammoumi/real-time-data-acquisition-of-solar-panel-using-arduino-9c72ef

M. A. A. Radia, M. K. E. Nimr, and A. S. Atlam, “IoT-based wireless data acquisition and control system for photovoltaic module performance analysis,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 6, Dec. 2023, doi: 10.1016/j.prime.2023.100348.

“IoT based photovoltaic monitoring system application”, doi: 10.1088/1742-6596/1367/1/012069.

A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A Study of LoRa: Long Range & Low Power Networks for the Internet of Things,” Sensors 2016, Vol. 16, Page 1466, vol. 16, no. 9, p. 1466, Sep. 2016, doi: 10.3390/S16091466.

J. Park, J. Kim, S. Lee, and J. K. Choi, “Machine learning based photovoltaic energy prediction scheme by augmentation of on-site IoT data,” Future Generation Computer Systems, vol. 134, pp. 1–12, Sep. 2022, doi: 10.1016/J.FUTURE.2022.03.028.

A. Malik, A. Haque, and V. S. B. Kurukuru, “IoT-based monitoring and management for photovoltaic system,” Fault Analysis and its Impact on Grid-connected Photovoltaic Systems Performance, pp. 291–318, Nov. 2022, doi: 10.1002/9781119873785.CH9.

D. Hercog, T. Lerher, M. Trunti?, and O. Težak, “Design and Implementation of ESP32-Based IoT Devices,” Sensors 2023, Vol. 23, Page 6739, vol. 23, no. 15, p. 6739, Jul. 2023, doi: 10.3390/S23156739.

A. Mellit and S. Kalogirou, “Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions,” Renewable and Sustainable Energy Reviews, vol. 143, p. 110889, Jun. 2021, doi: 10.1016/J.RSER.2021.110889.

Y. Cheng, H. Saputra, L. M. Goh, and Y. Wu, “Secure smart metering based on LoRa technology,” 2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis, ISBA 2018, vol. 2018-January, pp. 1–8, Mar. 2018, doi: 10.1109/ISBA.2018.8311466.

Descargas

Publicado

2024-01-15

Cómo citar

Quiñonez Solís , I. M., & Trujillo Ronquillo , D. F. (2024). Estudio de la integración de IoT con sistemas de generación fotovoltaica OFF-GRID. Dominio De Las Ciencias, 10(1), 87–103. https://doi.org/10.23857/dc.v10i1.3701

Número

Sección

Artí­culos Cientí­ficos