Percepción de estudiantes universitarios sobre la Ética y el uso de la Inteligencia artificial en la educación
DOI:
https://doi.org/10.23857/dc.v12i1.4655Palabras clave:
Inteligencia artificial, ética, integridad académica, percepción estudiantil, educación superiorResumen
La inteligencia artificial (IA) se ha consolidado como una tecnología clave en la transformación de la educación superior, generando oportunidades pedagógicas significativas, pero también desafíos éticos relacionados con la integridad académica, la autoría y el uso responsable de estas herramientas. El objetivo de este estudio fue analizar la percepción de los estudiantes universitarios sobre la ética y el uso de la inteligencia artificial en la educación superior. La investigación adoptó un enfoque cuantitativo, de tipo descriptivo y correlacional, con un diseño no experimental y de corte transversal. La población estuvo conformada por 105 estudiantes universitarios, a quienes se aplicó un cuestionario estructurado con escala tipo Likert, diseñado para medir tres dimensiones: uso académico de la IA, percepción ética de la IA e integridad académica y responsabilidad. El análisis de los datos se realizó mediante estadística descriptiva e inferencial, utilizando el coeficiente de correlación de Pearson. Los resultados evidenciaron una percepción moderadamente positiva hacia el uso académico de la IA, acompañada de una conciencia ética significativa. Asimismo, se identificaron relaciones positivas y estadísticamente significativas entre las dimensiones analizadas, lo que sugiere que un mayor uso de la IA se asocia con una mayor sensibilización ética y valoración de la integridad académica. En conclusión, el estudio destaca la necesidad de fortalecer políticas institucionales y estrategias pedagógicas orientadas a un uso ético, crítico y responsable de la inteligencia artificial en la educación superior.
Citas
Addas, A., Khan, M. N., Tahir, M., Naseer, F., Gulzar, Y., & Onn, C. W. (2025). Integrating sensor data and GAN-based models to optimize medical university distribution: a data-driven approach for sustainable regional growth in Saudi Arabia. Frontiers in Education, 10. https://doi.org/10.3389/feduc.2025.1527337
Airaj, M. (2024). Ethical artificial intelligence for teaching-learning in higher education. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12545-x
Albahli, S. (2025). Advancing Sustainable Educational Practices Through AI-Driven Prediction of Academic Outcomes. Sustainability (Switzerland), 17(3). https://doi.org/10.3390/su17031087
Ali, M. J., & Djalilian, A. (2023). Readership Awareness Series–Paper 4: Chatbots and ChatGPT - Ethical Considerations in Scientific Publications. In Seminars in Ophthalmology (Vol. 38, Issue 5, pp. 403–404). Taylor and Francis Ltd. https://doi.org/10.1080/08820538.2023.2193444
Alvarez-Garcia, M., Arenas-Parra, M., & Ibar-Alonso, R. (2024). Uncovering student profiles. An explainable cluster analysis approach to PISA 2022. Computers & Education, 223, 105166. https://doi.org/10.1016/j.compedu.2024.105166
Bin-Nashwan, S. A., Sadallah, M., & Bouteraa, M. (2023). Use of ChatGPT in academia: Academic integrity hangs in the balance. Technology in Society, 75. https://doi.org/10.1016/j.techsoc.2023.102370
Bozkurt, A. (2024). GenAI et al.: Cocreation, Authorship, Ownership, Academic Ethics and Integrity in a Time of Generative AI. In Open Praxis (Vol. 16, Issue 1, pp. 1–10). International Council for Open and Distance Education. https://doi.org/10.55982/openpraxis.16.1.654
Chan, C. K. Y. (2023a). A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00408-3
Chan, C. K. Y. (2023b). A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00408-3
Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2024). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61(2), 228–239. https://doi.org/10.1080/14703297.2023.2190148
He, J., Ma, T., & Zhang, Y. (2023). Design of blended Learning Mode and Practice Community using Intelligent Cloud Teaching. Education and Information Technologies, 28(8), 10593–10615. https://doi.org/10.1007/s10639-023-11606-x
Hernández-Sampieri, R., & Mendoza, C. P. (2018). Metodología de la Investigación (Séptima).
Kirwan, A. (2023). ChatGPT and university teaching, learning and assessment: some initial reflections on teaching academic integrity in the age of Large Language Models. Irish Educational Studies. https://doi.org/10.1080/03323315.2023.2284901
Lawrence, L. E. M., Echeverria, V., Yang, K., Aleven, V., & Rummel, N. (2024). How teachers conceptualise shared control with an AI co-orchestration tool: A multiyear teacher-centred design process. British Journal of Educational Technology, 55(3), 823–844. https://doi.org/10.1111/bjet.13372
McGrath, C., Cerratto Pargman, T., Juth, N., & Palmgren, P. J. (2023). University teachers’ perceptions of responsibility and artificial intelligence in higher education - An experimental philosophical study. Computers and Education: Artificial Intelligence, 4. https://doi.org/10.1016/j.caeai.2023.100139
Medina-Vidal, A., Alonso-Galicia, P. E., González-Mendoza, M., & Ramírez-Montoya, M. S. (2025). Financial inclusion of vulnerable sectors with a gender perspective: risk analysis model with artificial intelligence based on complex thinking. Journal of Innovation and Entrepreneurship, 14(1). https://doi.org/10.1186/s13731-025-00463-2
Qin, Y., Liu, G., & Wu, M. (2024). Good or Bad? Explore the Application of ChatGPT in Education ——Based on Interviews and User Experience Analysis. Twelfth International Conference of Educational Innovation through Technology, 158–163. https://doi.org/10.1109/eitt61659.2023.00037
Ross, E. A. S., & Baines, J. (2024). Treading water: new data on the impact of AI ethics information sessions in classics and ancient language pedagogy. Journal of Classics Teaching. https://doi.org/10.1017/S2058631024000412
Sharples, M. (2023). Towards social generative AI for education: theory, practices and ethics. Learning: Research and Practice, 9(2), 159–167. https://doi.org/10.1080/23735082.2023.2261131
Sysoyev, P. V. (2024). Ethics and AI-Plagiarism in an Academic Environment: Students’ Understanding of Compliance with Author’s Ethics and the Problem of Plagiarism in the Process of Interaction with Generative Artificial Intelligence. Vysshee Obrazovanie v Rossii, 33(2), 31–53. https://doi.org/10.31992/0869-3617-2024-33-2-31-53
Vallis, C., Wilson, S., Gozman, D., & Buchanan, J. (2023). Student Perceptions of AI-Generated Avatars in Teaching Business Ethics: We Might not be Impressed. Postdigital Science and Education. https://doi.org/10.1007/s42438-023-00407-7
Vygotzky, L. S. (1978). Mind in society: Development of higher psychological processes (Segunda). Harvard University Press.
Zhan, Y., & Yan, Z. (2025). Students’ engagement with ChatGPT feedback: implications for student feedback literacy in the context of generative artificial intelligence. Assessment and Evaluation in Higher Education, 2–14. https://doi.org/10.1080/02602938.2025.2471821
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Alex Miguel Montes Castillo , Rolando Israel Quincha Zapata , Myriam Johanna Naranjo Vaca

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.




