Inteligencia artificial en la educación universitaria: una revisión sistemática sobre la mejora de la calidad y el rendimiento académico
DOI:
https://doi.org/10.23857/dc.v10i4.4136Palabras clave:
inteligencia artificial, calidad educativa, rendimiento académico, educación superiorResumen
La inteligencia artificial (IA) es un conjunto de tecnologías que utilizan algoritmos informáticos para imitar la inteligencia humana, de tal manera que los usuarios tengan la sensación de estar interactuando con otra persona. Esta nueva tecnología posee un gran potencial para acelerar el proceso de realización y desarrollo de los objetivos globales en torno a la educación al reducir las barreras de acceso al aprendizaje, automatizar los procesos de gestión y optimizar los métodos para mejorar el rendimiento de los estudiantes y, como resultado, los resultados del aprendizaje. Con respecto a la educación superior, el registro de los avances significativos en inteligencia artificial abre nuevas posibilidades y desafíos para el aprendizaje, lo cual propicia el inicio de una nueva era para las instituciones universitarias. Las experiencias de aprendizaje personalizadas con IA, diseñadas en torno a las habilidades únicas, preferencias de aprendizaje e intereses de cada estudiante, pueden elevar los niveles de participación, motivación y dominio conceptual. En este sentido, se puede determinar que esta incorporación de tecnologías, recursos y estrategias de IA a las metodologías de enseñanza es un avance fundamental en el camino hacia el logro de un aprendizaje significativo e integrado. En base a lo anteriormente planteado se desarrolló la presente revisión bibliográfica con el objetivo de analizar el impacto de la inteligencia artificial en la educación universitaria, con especial énfasis en la mejora de la calidad educativa y el rendimiento académico.
Citas
Ahmad, S. F., Rahmat, M. K., Mubarik, M. S., Alam, M. M., & Hyder, S. I. (2021). Artificial Intelligence and Its Role in Education. Sustainability, 13(22), Article 22. https://doi.org/10.3390/su132212902
Alexander, B., Ashford-Rowe, K., Barajas-Murphy, N., Dobbin, G., Knott, J., McCormack, M., Pomerantz, J., Seilhamer, R., & Weber, N. (2019). EDUCAUSE Horizon Report: 2019 Higher Education Edition. EDUCAUSE.
Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., bin Saleh, K., Alowais, S. A., Alshaya, O. A., Rahman, I., Al Yami, M. S., & Albekairy, A. M. (2023). The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Research in Social and Administrative Pharmacy, 19(8), 1236-1242. https://doi.org/10.1016/j.sapharm.2023.05.016
Arunachalam, A. S., & Thambusamy, V. (2018). Analyzing student performance using evolutionary artificial neural network algorithm. International Journal of Engineering & Technology, 7, 67. https://doi.org/10.14419/ijet.v7i2.26.12537
Bahad?r, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers’ Academic Success upon Entering Graduate Education. Educational Sciences: Theory & Practice, 16, 943-964. https://doi.org/10.12738/estp.2016.3.0214
Barak, M., & Zadok, Y. (2009). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education, 19, 289-307. https://doi.org/10.1007/s10798-007-9043-3
Cabrera-Sánchez, J.-P., Villarejo-Ramos, Á. F., Liébana-Cabanillas, F., & Shaikh, A. A. (2021). Identifying relevant segments of AI applications adopters – Expanding the UTAUT2’s variables. Telematics and Informatics, 58, 101529. https://doi.org/10.1016/j.tele.2020.101529
de Lange, C. (2015). Welcome to the bionic dawn. New Scientist, 3032, 24-25.
Du?Harpur, X., Watt, F. M., Luscombe, N. M., & Lynch, M. D. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423-430. https://doi.org/10.1111/bjd.18880
García-Martínez, I., Fernández-Batanero, J. M., Fernández-Cerero, J., & León, S. P. (2023). Analysing the Impact of Artificial Intelligence and Computational Sciences on Student Performance: Systematic Review and Meta-analysis. Journal of New Approaches in Educational Research, 12(1), 171-197. https://doi.org/10.7821/naer.2023.1.1240
Hinojo-Lucena, F., Aznar-Díaz, I., Cáceres- Reche, M. P., & Romero-Rodríguez, J.-M. (2019). Artificial Intelligence in Higher Education: A Bibliometric Study on its Impact in the Scientific Literature. Education Sciences, 9, 51. https://doi.org/10.3390/educsci9010051
Jiménez-Hernández, E., Oktaba, H., Díaz-Barriga, F., & Piattini, M. (2020). Using web?based gamified software to learn Boolean algebra simplification in a blended learning setting. Computer Applications in Engineering Education, 28, 1-21. https://doi.org/10.1002/cae.22335
Kelly, S., Kaye, S.-A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. https://doi.org/10.1016/j.tele.2022.101925
Kengam, J. (2020). ARTIFICIAL INTELLIGENCE IN EDUCATION. https://doi.org/10.13140/RG.2.2.16375.65445
Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009
Luckin, R., & Holmes, W. (2016). Intelligence Unleashed: An argument for AI in Education.
McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa … examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28-37. https://doi.org/10.1016/j.chb.2019.05.009
McLean, S., Read, G. J. M., Thompson, J., Baber, C., Stanton, N. A., & Salmon, P. M. (2023). The risks associated with Artificial General Intelligence: A systematic review. Journal of Experimental & Theoretical Artificial Intelligence, 35(5), 649-663. https://doi.org/10.1080/0952813X.2021.1964003
Moreno Padilla, R. D. (2019). La llegada de la inteligencia artificial a la educación. Revista de Investigación en Tecnologías de la Información: RITI, 7(14), 260-270.
Nguyen, T., Tran, H., & Nguyen, M. (2023). Empowering Education: Exploring the Potential of Artificial Intelligence; Chapter 9 -Artificial Intelligence (AI) in Teaching and Learning: A Comprehensive Review.
Pasquale, F. (2015). The Black Box Society: The Secret Algorithms That Control Money and Information. Harvard University Press. https://www.jstor.org/stable/j.ctt13x0hch
Perez, S., Massey-Allard, J., Butler, D., Ives, J., Bonn, D., Yee, N., & Roll, I. (2017). Identifying Productive Inquiry in Virtual Labs Using Sequence Mining. 287-298. https://doi.org/10.1007/978-3-319-61425-0_24
Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 22. https://doi.org/10.1186/s41039-017-0062-8
Salas-Pilco, S. Z., & Yang, Y. (2022). Artificial intelligence applications in Latin American higher education: A systematic review. International Journal of Educational Technology in Higher Education, 19(1), 21. https://doi.org/10.1186/s41239-022-00326-w
Salmon, P., Carden, A., & Hancock, P. (2020). Putting the humanity into inhuman systems: How human factors and ergonomics can be used to manage the risks associated with artificial general intelligence. Human Factors and Ergonomics in Manufacturing & Service Industries, 31. https://doi.org/10.1002/hfm.20883
Shahzad, M. F., Xu, S., Lim, W. M., Yang, X., & Khan, Q. R. (2024). Artificial intelligence and social media on academic performance and mental well-being: Student perceptions of positive impact in the age of smart learning. Heliyon, 10(8). https://doi.org/10.1016/j.heliyon.2024.e29523
Tsai, M.-L., Ong, C. W., & Chen, C.-L. (2023). Exploring the use of large language models (LLMs) in chemical engineering education: Building core course problem models with Chat-GPT. Education for Chemical Engineers, 44, 71-95. https://doi.org/10.1016/j.ece.2023.05.001
UNESCO. (2020). The Sustainable Development Goals Report. https://doi.org/10.18356/d3229fb0-en
Veredas, F. J., Ruiz-Bandera, E., Villa-Estrada, F., Rufino-González, J. F., & Morente, L. (2014). A web-based e-learning application for wound diagnosis and treatment. Computer Methods and Programs in Biomedicine, 116(3), 236-248. https://doi.org/10.1016/j.cmpb.2014.06.005
Vilkova, K., & Shcheglova, I. (2021). Deconstructing self-regulated learning in MOOCs: In search of help-seeking mechanisms. Education and Information Technologies, 26(1), 17-33. https://doi.org/10.1007/s10639-020-10244-x
Vlachopoulos, D., & Makri, A. (2017). The effect of games and simulations on higher education: A systematic literature review. International Journal of Educational Technology in Higher Education, 14. https://doi.org/10.1186/s41239-017-0062-1
Wilkie, B., & Liefeith, A. (2020). Student experiences of live synchronised video feedback in formative assessment. Teaching in Higher Education, 27. https://doi.org/10.1080/13562517.2020.1725879
Yang, Y., Zhuang, Y., & Pan, Y. (2021). Multiple knowledge representation for big data artificial intelligence: Framework, applications, and case studies. Frontiers of Information Technology & Electronic Engineering, 22(12), 1551-1558. https://doi.org/10.1631/FITEE.2100463
Yelamarthi, K., & Drake, E. (2014). A Flipped First-Year Digital Circuits Course for Engineering and Technology Students. IEEE Transactions on Education, 1. https://doi.org/10.1109/TE.2014.2356174
Zacharis, N. (2016). Predicting Student Academic Performance in Blended Learning Using Artificial Neural Networks. International Journal of Artificial Intelligence & Applications, 7, 17-29. https://doi.org/10.5121/ijaia.2016.7502
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Armando Patricio Saquisari Pillajo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.