Inteligencia artificial en la educación universitaria: una revisión sistemática sobre la mejora de la calidad y el rendimiento académico

Autores/as

DOI:

https://doi.org/10.23857/dc.v10i4.4136

Palabras clave:

inteligencia artificial, calidad educativa, rendimiento académico, educación superior

Resumen

La inteligencia artificial (IA) es un conjunto de tecnologías que utilizan algoritmos informáticos para imitar la inteligencia humana, de tal manera que los usuarios tengan la sensación de estar interactuando con otra persona. Esta nueva tecnología posee un gran potencial para acelerar el proceso de realización y desarrollo de los objetivos globales en torno a la educación al reducir las barreras de acceso al aprendizaje, automatizar los procesos de gestión y optimizar los métodos para mejorar el rendimiento de los estudiantes y, como resultado, los resultados del aprendizaje. Con respecto a la educación superior, el registro de los avances significativos en inteligencia artificial abre nuevas posibilidades y desafíos para el aprendizaje, lo cual propicia el inicio de una nueva era para las instituciones universitarias. Las experiencias de aprendizaje personalizadas con IA, diseñadas en torno a las habilidades únicas, preferencias de aprendizaje e intereses de cada estudiante, pueden elevar los niveles de participación, motivación y dominio conceptual. En este sentido, se puede determinar que esta incorporación de tecnologías, recursos y estrategias de IA a las metodologías de enseñanza es un avance fundamental en el camino hacia el logro de un aprendizaje significativo e integrado. En base a lo anteriormente planteado se desarrolló la presente revisión bibliográfica con el objetivo de analizar el impacto de la inteligencia artificial en la educación universitaria, con especial énfasis en la mejora de la calidad educativa y el rendimiento académico.

Biografía del autor/a

Armando Patricio Saquisari Pillajo, Instituto Superior Universitario Japón

Instituto Superior Universitario Japón, Quito, Ecuador.

Citas

Ahmad, S. F., Rahmat, M. K., Mubarik, M. S., Alam, M. M., & Hyder, S. I. (2021). Artificial Intelligence and Its Role in Education. Sustainability, 13(22), Article 22. https://doi.org/10.3390/su132212902

Alexander, B., Ashford-Rowe, K., Barajas-Murphy, N., Dobbin, G., Knott, J., McCormack, M., Pomerantz, J., Seilhamer, R., & Weber, N. (2019). EDUCAUSE Horizon Report: 2019 Higher Education Edition. EDUCAUSE.

Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., bin Saleh, K., Alowais, S. A., Alshaya, O. A., Rahman, I., Al Yami, M. S., & Albekairy, A. M. (2023). The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Research in Social and Administrative Pharmacy, 19(8), 1236-1242. https://doi.org/10.1016/j.sapharm.2023.05.016

Arunachalam, A. S., & Thambusamy, V. (2018). Analyzing student performance using evolutionary artificial neural network algorithm. International Journal of Engineering & Technology, 7, 67. https://doi.org/10.14419/ijet.v7i2.26.12537

Bahad?r, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers’ Academic Success upon Entering Graduate Education. Educational Sciences: Theory & Practice, 16, 943-964. https://doi.org/10.12738/estp.2016.3.0214

Barak, M., & Zadok, Y. (2009). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education, 19, 289-307. https://doi.org/10.1007/s10798-007-9043-3

Cabrera-Sánchez, J.-P., Villarejo-Ramos, Á. F., Liébana-Cabanillas, F., & Shaikh, A. A. (2021). Identifying relevant segments of AI applications adopters – Expanding the UTAUT2’s variables. Telematics and Informatics, 58, 101529. https://doi.org/10.1016/j.tele.2020.101529

de Lange, C. (2015). Welcome to the bionic dawn. New Scientist, 3032, 24-25.

Du?Harpur, X., Watt, F. M., Luscombe, N. M., & Lynch, M. D. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423-430. https://doi.org/10.1111/bjd.18880

García-Martínez, I., Fernández-Batanero, J. M., Fernández-Cerero, J., & León, S. P. (2023). Analysing the Impact of Artificial Intelligence and Computational Sciences on Student Performance: Systematic Review and Meta-analysis. Journal of New Approaches in Educational Research, 12(1), 171-197. https://doi.org/10.7821/naer.2023.1.1240

Hinojo-Lucena, F., Aznar-Díaz, I., Cáceres- Reche, M. P., & Romero-Rodríguez, J.-M. (2019). Artificial Intelligence in Higher Education: A Bibliometric Study on its Impact in the Scientific Literature. Education Sciences, 9, 51. https://doi.org/10.3390/educsci9010051

Jiménez-Hernández, E., Oktaba, H., Díaz-Barriga, F., & Piattini, M. (2020). Using web?based gamified software to learn Boolean algebra simplification in a blended learning setting. Computer Applications in Engineering Education, 28, 1-21. https://doi.org/10.1002/cae.22335

Kelly, S., Kaye, S.-A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. https://doi.org/10.1016/j.tele.2022.101925

Kengam, J. (2020). ARTIFICIAL INTELLIGENCE IN EDUCATION. https://doi.org/10.13140/RG.2.2.16375.65445

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009

Luckin, R., & Holmes, W. (2016). Intelligence Unleashed: An argument for AI in Education.

McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa … examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28-37. https://doi.org/10.1016/j.chb.2019.05.009

McLean, S., Read, G. J. M., Thompson, J., Baber, C., Stanton, N. A., & Salmon, P. M. (2023). The risks associated with Artificial General Intelligence: A systematic review. Journal of Experimental & Theoretical Artificial Intelligence, 35(5), 649-663. https://doi.org/10.1080/0952813X.2021.1964003

Moreno Padilla, R. D. (2019). La llegada de la inteligencia artificial a la educación. Revista de Investigación en Tecnologías de la Información: RITI, 7(14), 260-270.

Nguyen, T., Tran, H., & Nguyen, M. (2023). Empowering Education: Exploring the Potential of Artificial Intelligence; Chapter 9 -Artificial Intelligence (AI) in Teaching and Learning: A Comprehensive Review.

Pasquale, F. (2015). The Black Box Society: The Secret Algorithms That Control Money and Information. Harvard University Press. https://www.jstor.org/stable/j.ctt13x0hch

Perez, S., Massey-Allard, J., Butler, D., Ives, J., Bonn, D., Yee, N., & Roll, I. (2017). Identifying Productive Inquiry in Virtual Labs Using Sequence Mining. 287-298. https://doi.org/10.1007/978-3-319-61425-0_24

Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 22. https://doi.org/10.1186/s41039-017-0062-8

Salas-Pilco, S. Z., & Yang, Y. (2022). Artificial intelligence applications in Latin American higher education: A systematic review. International Journal of Educational Technology in Higher Education, 19(1), 21. https://doi.org/10.1186/s41239-022-00326-w

Salmon, P., Carden, A., & Hancock, P. (2020). Putting the humanity into inhuman systems: How human factors and ergonomics can be used to manage the risks associated with artificial general intelligence. Human Factors and Ergonomics in Manufacturing & Service Industries, 31. https://doi.org/10.1002/hfm.20883

Shahzad, M. F., Xu, S., Lim, W. M., Yang, X., & Khan, Q. R. (2024). Artificial intelligence and social media on academic performance and mental well-being: Student perceptions of positive impact in the age of smart learning. Heliyon, 10(8). https://doi.org/10.1016/j.heliyon.2024.e29523

Tsai, M.-L., Ong, C. W., & Chen, C.-L. (2023). Exploring the use of large language models (LLMs) in chemical engineering education: Building core course problem models with Chat-GPT. Education for Chemical Engineers, 44, 71-95. https://doi.org/10.1016/j.ece.2023.05.001

UNESCO. (2020). The Sustainable Development Goals Report. https://doi.org/10.18356/d3229fb0-en

Veredas, F. J., Ruiz-Bandera, E., Villa-Estrada, F., Rufino-González, J. F., & Morente, L. (2014). A web-based e-learning application for wound diagnosis and treatment. Computer Methods and Programs in Biomedicine, 116(3), 236-248. https://doi.org/10.1016/j.cmpb.2014.06.005

Vilkova, K., & Shcheglova, I. (2021). Deconstructing self-regulated learning in MOOCs: In search of help-seeking mechanisms. Education and Information Technologies, 26(1), 17-33. https://doi.org/10.1007/s10639-020-10244-x

Vlachopoulos, D., & Makri, A. (2017). The effect of games and simulations on higher education: A systematic literature review. International Journal of Educational Technology in Higher Education, 14. https://doi.org/10.1186/s41239-017-0062-1

Wilkie, B., & Liefeith, A. (2020). Student experiences of live synchronised video feedback in formative assessment. Teaching in Higher Education, 27. https://doi.org/10.1080/13562517.2020.1725879

Yang, Y., Zhuang, Y., & Pan, Y. (2021). Multiple knowledge representation for big data artificial intelligence: Framework, applications, and case studies. Frontiers of Information Technology & Electronic Engineering, 22(12), 1551-1558. https://doi.org/10.1631/FITEE.2100463

Yelamarthi, K., & Drake, E. (2014). A Flipped First-Year Digital Circuits Course for Engineering and Technology Students. IEEE Transactions on Education, 1. https://doi.org/10.1109/TE.2014.2356174

Zacharis, N. (2016). Predicting Student Academic Performance in Blended Learning Using Artificial Neural Networks. International Journal of Artificial Intelligence & Applications, 7, 17-29. https://doi.org/10.5121/ijaia.2016.7502

Descargas

Publicado

2024-12-02

Cómo citar

Saquisari Pillajo, A. P. (2024). Inteligencia artificial en la educación universitaria: una revisión sistemática sobre la mejora de la calidad y el rendimiento académico. Dominio De Las Ciencias, 10(4), 1493–1511. https://doi.org/10.23857/dc.v10i4.4136

Número

Sección

Artí­culos Cientí­ficos

Artículos más leídos del mismo autor/a