Técnicas y aplicaciones de Machine Learning en el campo de la Mecatrónica: Una Revisión Sistemática de Literatura
DOI:
https://doi.org/10.23857/dc.v10i3.4024Palabras clave:
Aprendizaje Automático, Mecatrónica, Metodología PRISMA, Procesos Industriales, Revisión Sistemática de Literatura (SLR)Resumen
A nivel global existe la necesidad de mejorar los procesos industriales. Es por ello que, la combinación de tecnologías de la información, mecánica y electrónica, son pieza fundamental para afrontar desafíos que se presentan en empresas y organizaciones. Este nuevo campo se ha denominado Mecatrónica. Así también, la aplicación de técnicas de Machine Learning (ML) se ha tornado un eje primordial para el análisis de la información tanto a nivel descriptivo como predictivo. El problema radica en que no existe actualmente una visión consolidada y sistematizada a nivel científico sobre las técnicas y aplicaciones específicas de ML en el ámbito de la Mecatrónica. Esta investigación tiene por objetivo identificar cuáles son las técnicas, aplicaciones y desafíos de ML en el campo de la Mecatrónica mediante la revisión sistemática de literatura (SLR), considerando investigaciones y casos de estudio de alto impacto. Para ello se aplicó la metodología PRISMA, y se establece una cadena de búsqueda, con mecanismos sistemáticos de revisión y selección, hasta la obtención de los estudios primarios. Los resultados obtenidos indican que las técnicas de ML más relevantes en el ámbito de la Mecatrónica incluyen Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) y Decision Trees, aplicadas en tareas como control, detección, automatización, optimización, reconocimiento, diagnóstico, mantenimiento, pronóstico, entre otros. Los principales desafíos son la adaptabilidad e integración con otras tecnologías.
Citas
Abboudi, A., & Belmajdoub, F. (2021). Hybrid Diagnosis Method Applied to Switched Mechatronic Systems. Journal Européen des Systèmes Automatisés, 54, 683-691. https://doi.org/10.18280/jesa.540503
Ambadekar, P., Ambadekar, S., Choudhari, C., Patil, S., & Gawande, S. (2023). Artificial intelligence and its relevance in mechanical engineering from Industry 4.0 perspective. Australian Journal of Mechanical Engineering, 1-21. https://doi.org/10.1080/14484846.2023.2249144
Aume, C., Pal, S., Jolfaei, A., & Mukhopadhyay, S. (2023). Multimodal Social Data Analytics on the Design and Implementation of an EEG-Mechatronic System Interface. Journal of Data and Information Quality, 15. https://doi.org/10.1145/3597306
Ayankoso, S., & Olejnik, P. (2023). Time-Series Machine Learning Techniques for Modeling and Identification of Mechatronic Systems with Friction: A Review and Real Application. Electronics, 12(17), Article 17. https://doi.org/10.3390/electronics12173669
Bey-Temsamani, A., Ompusunggu, A., & Hammer, F. (2020). AI meets Agriculture: A Smart System for Foreign Object Damage Avoidance. 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), 1, 191-195. https://doi.org/10.1109/ICPS48405.2020.9274735
Bodero, E., De Giusti, M., Morales, C., Bodero, E., De Giusti, M., & Morales, C. (2022). Preservación digital a largo plazo: Estándares, auditoría, madurez y planificación estratégica. Revista Interamericana de Bibliotecología, 45(2). https://doi.org/10.17533/udea.rib.v45n2e344178
Buranich, V., Rogoz, V., Postolnyi, B., & Pogrebnjak, A. (2020). Predicting the Properties of the Refractory High-Entropy Alloys for Additive Manufacturing-Based Fabrication and Mechatronic Applications. 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), 1-5. https://doi.org/10.1109/NAP51477.2020.9309720
Caceres-Castellanos, C., Fehsenfeld, M., & Kortmann, K.-P. (2023). Condition Monitoring using Domain-Adversarial Networks with Convolutional Kernel Features. IFAC-PapersOnLine, 56(2), 7746-7752. https://doi.org/10.1016/j.ifacol.2023.10.1180
Castro, B., Parrales, K., Ferrín, J., & García, J. (2022). La Mecatrónica y su importancia en la sociedad. Journal TechInnovation, 1(1), Article 1. https://doi.org/10.47230/Journal.TechInnovation.v1.n1.2022.46-54
Chanmee, S., & Kesorn, K. (2023). Semantic decision Trees: A new learning system for the ID3-Based algorithm using a knowledge base. Advanced Engineering Informatics, 58, 102156. https://doi.org/10.1016/j.aei.2023.102156
Chidhananda, R., & Kulkarni, A. (2021). Application of automation strategies to prevent failure in mechatronic water plant system. Materials Today: Proceedings, 37, 1480-1485. https://doi.org/10.1016/j.matpr.2020.07.105
Erkaymaz, O. (2020). Resilient back-propagation approach in small-world feed-forward neural network topology based on Newman–Watts algorithm. Neural Computing and Applications, 32(20), 16279-16289. https://doi.org/10.1007/s00521-020-05161-6
Gerschütz, B., Sauer, C., Kormann, A., Nicklas, S., Goetz, S., Roppel, M., Tremmel, S., Paetzold-Byhain, K., & Wartzack, S. (2023). Digital Engineering Methods in Practical Use during Mechatronic Design Processes. Designs, 7(4), Article 4. https://doi.org/10.3390/designs7040093
Homburger, H., Wirtensohn, S., Diehl, M., & Reuter, J. (2023). Comparison of Data-Driven Modeling and Identification Approaches for a Self-Balancing Vehicle. IFAC-PapersOnLine, 56(2), 6839-6844. https://doi.org/10.1016/j.ifacol.2023.10.611
Huang, H.-C., & Chuang, C.-C. (2020). Artificial Bee Colony Optimization Algorithm Incorporated With Fuzzy Theory for Real-Time Machine Learning Control of Articulated Robotic Manipulators. IEEE Access, 8, 192481-192492. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3032715
Huang, H.-C., & Xu, J.-J. (2020). Evolutionary Machine Learning for Optimal Polar-Space Fuzzy Control of Cyber-Physical Mecanum Vehicles. Electronics, 9(11), Article 11. https://doi.org/10.3390/electronics9111945
Hurwitz, J., & Kirsch, D. (2018). Machine Learning For Dummies, IBM Limited Edition.
Kim, D., TabkhPaz, M., Park, S. S., & Lee, J. (2023). Development of a vision-based automated hole assembly system with quality inspection. Manufacturing Letters, 35, 64-73. https://doi.org/10.1016/j.mfglet.2023.08.018
Krishna, R., & Khan, S. (2020). Defence Base Operated Mecanum Wheel Robot Using Night Vision Camera. Journal of Advanced Research in Dynamic and Control Systems, 12(6), 443-449. https://doi.org/10.5373/JARDCS/V12I6/S20201048
Ku, H.-C., Liu, Y.-C., Su, J.-Y., & Kung, C.-C. (2014). Feature Extraction and Analysis from a Biomimetic Tactile Sensor. ????????, 35(4), 313-319. https://www.airitilibrary.com/Article/Detail/02579731-201408-201501210010-201501210010-313-319
Larranaga, P., Inza, I., & Moujahid, A. (1997). Tema 8. Redes Neuronales. Redes Neuronales, U. del P. Vasco, 12, 17. http://www.sc.ehu.es/ccwbayes/docencia/mmcc/docs/t8neuronales
Manzl, P., Rogov, O., Gerstmayr, J., Mikkola, A., & Orzechowski, G. (2023). Reliability evaluation of reinforcement learning methods for mechanical systems with increasing complexity. Multibody System Dynamics, 1-25. https://doi.org/10.1007/s11044-023-09960-2
Martinez, C., Schoenmakers, F., Naus, G., Meessen, K., Douven, Y., Loo, H., Bruijnen, D., Aangenent, W., Groenen, J., Ninhuijs, B., Briegel, M., Hoogendijk, R., Brakel, P., Berg, R., Hendriks, O., Arts, R., Botden, F., Houtman, W., Klooster, M., & Molengraft, M. (2015). Tech United Eindhoven, winner RoboCup 2014 MSL: Middle Size League. 8992, 60-69. https://doi.org/10.1007/978-3-319-18615-3-5
Monroy, I., & Barrera, F. (2022). A Mechatronic Engineering Approach on the Design of a Telemetry, Tracking, and Command System for the Monitoring of a 3u Cubesat Nanosatellite. International Astronautical Federation. https://iafastro.directory/iac/archive/browse/IAC-22/B2/IPB/72264/
Nageshrao, S., Lopes, G., Jeltsema, D., & Babuška, R. (2014). Passivity-based reinforcement learning control of a 2-DOF manipulator arm. Mechatronics, 24(8), 1001-1007. https://doi.org/10.1016/j.mechatronics.2014.10.005
Nocentini, O., Kim, J., Bashir, Z., & Cavallo, F. (2022). Learning-based control approaches for service robots on cloth manipulation and dressing assistance: A comprehensive review. Journal of NeuroEngineering and Rehabilitation, 19. https://doi.org/10.1186/s12984-022-01078-4
Oleaga, I., Pardo, C., Zulaika, J., & Bustillo, A. (2018). A machine-learning based solution for chatter prediction in heavy-duty milling machines. Measurement, 128, 34-44. https://doi.org/10.1016/j.measurement.2018.06.028
Page, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., Mulrow, C., Shamseer, L., Tetzlaff, J., Akl, E., Brennan, S., Chou, R., Glanville, J., Grimshaw, J., Hróbjartsson, A., Lalu, M., Li, T., Loder, E., Mayo-Wilson, E., McDonald, S.,... & Alonso-Fernández, S. (2021). Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016
Poot, M., Portegies, J., Mooren, N., van Haren, M., van Meer, M., & Oomen, T. (2022). Gaussian Processes for Advanced Motion Control. In 2022 American Control Conference (ACC), 3355-3355. https://doi.org/10.23919/ACC53348.2022.9867420
Porcelli, A. (2020). La inteligencia artificial y la robótica: Sus dilemas sociales, éticos y jurídicos. Derecho global. Estudios sobre derecho y justicia, 6(16), 49-105. https://doi.org/10.32870/dgedj.v6i16.286
Rozo-García, F. (2020). Revisión de las tecnologías presentes en la industria 4.0. Revista UIS Ingenierías, 19(2), Article 2. https://doi.org/10.18273/revuin.v19n2-2020019
Rúa, S., Zuluaga, S., Redondo, A., Orozco-Duque, A., Restrepo, J., & Bustamante, J. (2012). Machine learning algorithms for real time arrhythmias detection in portable cardiac devices: Microcontroller implementation and comparative analysis. In 2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA), 50-55. https://doi.org/10.1109/STSIVA.2012.6340556
Saadatfar, H., Khosravi, S., Joloudari, J., Mosavi, A., & Shamshirband, S. (2020). A New K-Nearest Neighbors Classifier for Big Data Based on Efficient Data Pruning. Mathematics, 8(2), Article 2. https://doi.org/10.3390/math8020286
Sarker, I., Kayes, A., & Watters, P. (2019a). Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. Journal of Big Data, 6(1), 57. https://doi.org/10.1186/s40537-019-0219-y
Sarker, I., Kayes, A., & Watters, P. (2019b). Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. Journal of Big Data, 6(1), 57. https://doi.org/10.1186/s40537-019-0219-y
Skvorchevsky, A. (2023). Electronic Load Sensing for Integrating Electro-Hydraulic Mechatronic Actuators with Industry 4.0 and 5.0 Components. In International Conference on Reliable Systems Engineering (pp. 440-455). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40628-7_37
Thielen, N., Wagner, M., Meier, S., Voigt, C., & Franke, J. (2023). Anomaly Detection for Dispensing of Solder Paste on 3D Circuit Carriers Using Machine Learning. In 2023 IEEE 25th Electronics Packaging Technology Conference (EPTC) (pp. 932-937). IEEE. https://doi.org/10.1109/EPTC59621.2023.10457873
Van, K., Vrancx, P., De Hauwere, Y.-M., Nowé, A., Hostens, E., & Lauwerys, C. (2014). Tuning hydrostatic two-output drive-train controllers using reinforcement learning. Mechatronics, 24(8), 975-985. https://doi.org/10.1016/j.mechatronics.2014.07.005
Yuan, D., Huang, J., Yang, X., & Cui, J. (2020). Improved random forest classification approach based on hybrid clustering selection. In 2020 Chinese Automation Congress (CAC), 1559-1563. https://doi.org/10.1109/CAC51589.2020.9326711
Zaitceva, I., & Andrievsky, B. (2022). Methods of Intelligent Control in Mechatronics and Robotic Engineering: A Survey. Electronics, 11(15), Article 15. https://doi.org/10.3390/electronics11152443
Zamudio-Ramirez, I., Osornio-Rios, R., Antonino-Daviu, J., Cureño-Osornio, J., & Saucedo-Dorantes, J.-J. (2021). Gradual Wear Diagnosis of Outer-Race Rolling Bearing Faults through Artificial Intelligence Methods and Stray Flux Signals. Electronics, 10(12), Article 12. https://doi.org/10.3390/electronics10121486
Zhang, W., Yang, D., & Wang, H. (2019a). Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey. IEEE Systems Journal, 13(3), 2213-2227. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2019.2905565
Zhang, X., Xue, R., Yang, Y., Cheng, L., & Fang, Y. (2016b). Learning time-optimal anti-swing trajectories for overhead crane systems. In Advances in Neural Networks–ISNN 2016: 13th International Symposium on Neural Networks, ISNN 2016, St. Petersburg, Russia, July 6-8, 2016, Proceedings 13 (pp. 338-345). Springer International Publishing. https://doi.org/10.1007/978-3-319-40663-3_39
Zhang, Y., Beudaert, X., Argandoña, J., Ratchev, S., & Munoa, J. (2020c). A CPPS based on GBDT for predicting failure events in milling. The International Journal of Advanced Manufacturing Technology, 111(1), 341-357. https://doi.org/10.1007/s00170-020-06078-z
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Adrián Ramiro Granja Rojas, Elba María Bodero Poveda
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.