Fibra de coco como residuo agroindustrial para la elaboración de macetas biodegradables

Autores/as

DOI:

https://doi.org/10.23857/dc.v10i2.3876

Palabras clave:

Macetas biodegradables, Fibra de coco, ; Resistencia mecánica, Degradación

Resumen

En un mundo donde la preservación del medio ambiente se ha convertido en una prioridad innegable, es crucial explorar opciones sustentables y amigables para tratar los residuos agroindustriales y así reducir el impacto ambiental. En este contexto, el presente estudio investigó la viabilidad de utilizar fibra de coco para fabricar macetas biodegradables. Para ello, se llevó a cabo un experimento con tres tipos de tratamientos a base de fibra de coco, almidón de maíz y vinagre en distintas concentraciones, todos evaluados estadísticamente mediante un ANOVA y el test de Tukey. Los resultados obtenidos mostraron un impacto significativo, tanto a nivel estadístico como práctico. El tratamiento T3 exhibió la mayor resistencia mecánica, con valores de 0.32 kN (compresión) y 0.71 kN (tracción). El tratamiento T2 presentó la mayor capacidad de absorción de agua inicialmente (46%), pero luego las macetas del tratamiento T3 superaron a las del tratamiento T1 en absorción. En cuanto a la degradación, el tratamiento T2 destacó con un 46% de degradación, seguido por T1 (18.88%) y T3 (10.75%). En conclusión, las macetas biodegradables fabricadas con fibra de coco en el tratamiento T3 exhibe la mayor resistencia mecánica, con valores de 0.32 kN (compresión) y 0.71 kN (tracción), así como una capacidad de absorción de agua que supera a la del tratamiento T1 a lo largo del tiempo, lo que lo posiciona como la opción más adecuada para aplicaciones que necesitan una combinación de durabilidad y retención de agua a largo plazo.

Citas

Ahmad, J., Majdi, A., Al-Fakih, A., Deifalla, A., Althoey, F., El Ouni, M. y El-Shorbagy, M. (2022). Mechanical and Durability Performance of Coconut Fiber Reinforced Concrete: A State-of-the-Art Review. Materials, 15(10), 3601. https://doi.org/10.3390/ma15103601

Ahmad, J., Manan, A., Ali, A., Khan, M. W., Asim, M. y Zaid, O. (2020). A Study on Mechanical and Durability Aspects of Concrete Modified with Steel Fibers (SFs). Civil Engineering and Architecture, 8(5), 814–823. https://doi.org/10.13189/cea.2020.080508

Ali, M. (2020). Coconut fibre – A versatile material and its applications in engineering. 2(9), . 189-197.

Amsamani, S., Aneetta, V. y Naveena, C. (2023). Eco-Pots: An Alternative to Plastic Sapling Bags. In: Muthu, S.S. (eds) Novel Sustainable Raw Material Alternatives for the Textiles and Fashion Industry. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. https://doi.org/10.1007/978-3-031-37323-7_9

Artigas, V., Quintana, M., Positieri, M. y Oshiro, Á. (2022). Efectos de la utilizatión de desecho de polvo de perlita natural em hormigones autocompactantes coloreados. Concreto & Construções, XLIX(105), 42–47. https://doi.org/10.4322/1809-7197.2022.105.0003

Atoshi, M. A. y Gani, J. (2023). Characterization Of Heterogenous Catalyst Produced By Physical Activation Of Cocos Nucifera Shell Waste. 7(2). https://doi.org/10.56892/bima.v7i02.%201.463

Awoyera, P., Odutuga, O., Effiong, J., De Jesus, A., Mortazavi, S. y Hu, J. (2022). Development of Fibre-Reinforced Cementitious Mortar with Mineral Wool and Coconut Fibre. Materials, 15(13), 4520. https://doi.org/10.3390/ma15134520

Ayilara, M., Olanrewaju, O., Babalola, O. y Odeyemi, O. (2020). Waste Management through Composting: Challenges and Potentials. Sustainability, 12(11), 4456. https://doi.org/10.3390/su12114456

Basurto, C. y Vera, M. (2022). Evaluación de los residuos agrícolas cascarilla de arroz (Oryza sativa) y fibra de coco (Cocos nucifera) como sustratos para sistemas acuapónicos [Esceula Superior Politécnica agropecuaria de Manabí - Manuel Félix López]. https://repositorio.espam.edu.ec/handle/42000/1922

Bui, H., Sebaibi, N., Boutouil, M. y Levacher, D. (2020). Determination and Review of Physical and Mechanical Properties of Raw and Treated Coconut Fibers for Their Recycling in Construction Materials. Fibers, 8(6), 37. https://doi.org/10.3390/fib8060037

Cerrato, M. D., Ribas, A., Cardona, C. y Gil, L. (2021). Species introductions through coconut fibre: Dactyloctenium aegyptium and Glinus oppositifolius, new records for the Balearic Islands, Spain. Acta Botanica Croatica, 80(2), 221–224. https://doi.org/10.37427/botcro-2021-023

Chaves, Y., Da Silveira, P., Monteiro, S. y Nascimento, L. (2023). Babassu Coconut Fibers: Investigation of Chemical and Surface Properties (Attalea speciosa.). Polymers, 15(19), 3863. https://doi.org/10.3390/polym15193863

Ciccarelli, L., Cloppenburg, F., Ramaswamy, S., Lomov, S. V., Van, A., Vo Hong, N., Chi Thanh, T., Minh Tri, N. y Thomas, G. (2020). Sustainable composites: Processing of coir fibres and application in hybrid-fibre composites. Journal of Composite Materials, 54(15), 1947–1960. https://doi.org/10.1177/0021998319886108

Dahal, S., Yilma, W., Sui, Y., Atreya, M., Bryan, S., Davis, V., Whiting, G. L. y Khosla, R. (2020). Degradability of Biodegradable Soil Moisture Sensor Components and Their Effect on Maize (Zea mays L.) Growth. Sensors, 20(21), 6154. https://doi.org/10.3390/s20216154

De Azevedo, A., Amin, M., Hadzima, M., Saad, I., Zeyad, A., Tayeh, B. y Adesina, A. (2022). Possibilities for the application of agro-industrial wastes in cementitious materials: A brief review of the Brazilian perspective. Cleaner Materials, 3, 100040. https://doi.org/10.1016/j.clema.2021.100040

Fuentes, R., Berthe, J., Barbosa, S. y Castillo, L. (2021). Development of biodegradable pots from different agroindustrial wastes and byproducts. 30. https://doi.org/10.1016/j.susmat.2021.e00338

Grand, H. (2022). Abaca Fiber Market Size, Share & Trends Analysis Report By Product (Pulp & Paper, Fiber Craft, Cordage, Textile), By Region (North America, Asia Pacific, Europe, Central & South America, MEA), And Segment Forecasts, 2021—2028 (GVR-4-68039-517-3; p. 133). https://www.grandviewresearch.com/industry-analysis/abaca-fiber-market#

Gu, M., Ahmad, W., Alaboud, T., Zia, A., Akmal, U., Awad, Y. y Alabduljabbar, H. (2022). Scientometric Analysis and Research Mapping Knowledge of Coconut Fibers in Concrete. Materials, 15(16), 5639. https://doi.org/10.3390/ma15165639

Hasan, K., Horváth, P., Bak, M. y Alpár, T. (2021). A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Advances, 11(18), 10548–10571. https://doi.org/10.1039/D1RA00231G

Instituto Nacional de Estadística y Censos [INEC]. (2020). Municipales 2020 [Ecuador en Cifras]. https://www.ecuadorencifras.gob.ec/gad-municipales-2020/

Ismail, S., Akpan, E. y Dhakal, H. (2022). Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives. Composites Part C: Open Access, 9, 100322. https://doi.org/10.1016/j.jcomc.2022.100322

Jan, K., Riar, C.. y Saxena, D. (2015). Engineering and functional properties of biodegradable pellets developed from various agro-industrial wastes using extrusion technology. Journal of Food Science and Technology, 52(12), 7625–7639. https://doi.org/10.1007/s13197-015-1938-5

Juanga, J. y Yuan, Q. (2021). Making Biodegradable Seedling Pots from Textile and Paper Waste—Part A: Factors Affecting Tensile Strength. International Journal of Environmental Research and Public Health, 18(13), 6964. https://doi.org/10.3390/ijerph18136964

Kochova, K., Gauvin, F., Schollbach, K. y Brouwers, H. (2020). Using alternative waste coir fibres as a reinforcement in cement-fibre composites. Construction and Building Materials, 231, 117121. https://doi.org/10.1016/j.conbuildmat.2019.117121

Kramar, A. y González, J. (2023). Preparation of cellulose acetate film with dual hydrophobic-hydrophilic properties using solution blow spinning. Materials & Design, 227, 111788. https://doi.org/10.1016/j.matdes.2023.111788

Llamas, A., Vázquez, J., Balderrama, J., Reyes, J. y Pedraza, M. (2019). Prototipo de urna funeraria eco- lógica elaborada con fibra de coco. 2(2), 100–106.

MacLeod, M., Arp, H., Tekman, M. y Jahnke, A. (2021). The global threat from plastic pollution. Science, 373(6550), 61–65. https://doi.org/10.1126/science.abg5433

Maertens, L. (2021). Climatizing the UN Security Council. International Politics, 58(4), 640–660. https://doi.org/10.1057/s41311-021-00281-9

Martinelli, F.., Pariz, M. G., De Andrade, R., Ferreira, S., Marques, F., Monteiro, S. y De Azevedo, A. (2024). Influence of drying temperature on coconut-fibers. Scientific Reports, 14(1), 6421. https://doi.org/10.1038/s41598-024-56596-z

Martinelli, F., Ribeiro, F., Marvila, M., Monteiro, S., Filho, F. y Azevedo, A. (2023). A Review of the Use of Coconut Fiber in Cement Composites. Polymers, 15(5), 1309. https://doi.org/10.3390/polym15051309

Mathavan, M., Sakthieswaran, N. y Ganesh Babu, O. (2021). Experimental investigation on strength and properties of natural fibre reinforced cement mortar. Materials Today: Proceedings, 37, 1066–1070. https://doi.org/10.1016/j.matpr.2020.06.295

Mohanavel, V., Suresh Kumar, S., Vairamuthu, J., Ganeshan, P. y NagarajaGanesh, B. (2022). Influence of Stacking Sequence and Fiber Content on the Mechanical Properties of Natural and Synthetic Fibers Reinforced Penta-Layered Hybrid Composites. Journal of Natural Fibers, 19(13), 5258–5270. https://doi.org/10.1080/15440478.2021.1875368

Montoya, M., Espinal, M., Bello, I. P., López, C., Mendoza, E., Bravo, C. y López, P. (2022). Elaboración de bioplásticos a base de cáscara de plátano (musa paradisiaca) y almidón de maíz (zea mays). Ciencia Latina Revista Científica Multidisciplinar, 6(4), 2385–2401. https://doi.org/10.37811/cl_rcm.v6i4.2763

Navarro, P. (2023). Latin America: Top exporters of coconut oil 2018, based on export value [Statista]. https://www.statista.com/statistics/875788/export-value-coconut-oil-latin-america-country/

Nunes, L., Silva, M., Gerber, J. y Kalid, R. (2020). Waste green coconut shells: Diagnosis of the disposal and applications for use in other products. Journal of Cleaner Production, 255, 120169. https://doi.org/10.1016/j.jclepro.2020.120169

Ogunbiyi, O., Gbenebor, O., Salifu, S., Olaleye, S., Jamiru, T., Sadiku, R. y Adeosun, S. (2022). Strength Characteristics of Electrospun Coconut Fibre Reinforced Polylactic Acid: Experimental and Representative Volume Element (RVE) Prediction. Materials, 15(19), 6676. https://doi.org/10.3390/ma15196676

Ozoh, A., Longe, B., Akpe, V. y Cock, I. (2021). Indiscriminate Solid Waste Disposal and Problems with Water-Polluted Urban Cities in Africa. 24(1–7).

Palanisamy, E. y Ramasamy, M. (2022). Dependency of Sisal and Banana Fiber on Mechanical and Durability Properties of Polypropylene Hybrid Fiber Reinforced Concrete. Journal of Natural Fibers, 19(8), 3147–3157. https://doi.org/10.1080/15440478.2020.1840477

Patel, A., Temgire, S. y Borah, A. (2021). Agro-industrial waste as source of bioactive compounds and their utilization: A review. The Pharma Innovation, 10(5), 192–196. https://doi.org/10.22271/tpi.2021.v10.i5c.6197

Piña Ramírez, C., Del Río Merino, M., Viñas Arrebola, C., Vidales Barriguete, A. y Kosior-Kazberuk, M. (2019). Analysis of the mechanical behaviour of the cement mortars with additives of mineral wool fibres from recycling of CDW. Construction and Building Materials, 210, 56–62. https://doi.org/10.1016/j.conbuildmat.2019.03.062

Raman, V. Kumar, P., Sunagar, P., Bommanna, K., Vezhavendhan, R., Bhattacharya, S., Prabhu, S. y Sasikumar, B. (2022). Investigation on Mechanical Properties of Bamboo and Coconut Fiber with Epoxy Hybrid Polymer Composite. Advances in Polymer Technology, 2022, 1–5. https://doi.org/10.1155/2022/9133411

Ricciardi, P., Cillari, G., Carnevale Miino, M. y Collivignarelli, M. C. (2020). Valorization of agro-industry residues in the building and environmental sector: A review. Waste Management & Research, 38(5), 487–513. https://doi.org/10.1177/0734242X20904426

Salama, H., Abdelhamid, S. y Dairouty, R. (2019). Coconut Bio-yoghurt Phytochemical-chemical and Antimicrobial-microbial Activities. 22(11), 527–536. https://doi.org/doi: 10.3923/pjbs.2019.527.536.

Sekar, A. y Kandasamy, G. (2018). Optimization of Coconut Fiber in Coconut Shell Concrete and Its Mechanical and Bond Properties. Materials, 11(9), 1726. https://doi.org/10.3390/ma11091726

Sultana, N., Hossain, S., Alam, M., Hashish, M. y Islam, M. (2020). An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete. Construction and Building Materials, 243, 118216. https://doi.org/10.1016/j.conbuildmat.2020.118216

Sun, S., Gao, Z., Li, Z., Li, Y., Gao, J.., Yuan-Jun, C., Li, H., Liu, X. y Wang, Z. (2020). Effect of Wood Vinegar on Adsorption and Desorption of Four Kinds of Heavy (loid) Metals Adsorbents. Chinese Journal of Analytical Chemistry, 48(2), e20013–e20020. https://doi.org/10.1016/S1872-2040(19)61217-X

Sun, X., Liu, X., Yang, X. y Song, B. (2021). Computer-Aided Three-Dimensional Ceramic Product Design. Computer-Aided Design and Applications, 19(S3), 97–107. https://doi.org/10.14733/cadaps.2022.S3.97-107

Tawasil, D., Aminudin, E., Abdul Shukor Lim, N., Nik Soh, N., Leng, P., Ling, G. y Ahmad, M. (2021). Coconut Fibre and Sawdust as Green Building Materials: A Laboratory Assessment on Physical and Mechanical Properties of Particleboards. Buildings, 11(6), 256. https://doi.org/10.3390/buildings11060256

Tighe, D. (2023). Consumer shift towards buying sustainable products over the past five years 2022 [Panel survey]. Statista. https://www.statista.com/statistics/1377869/global-shift-to-buying-sustainable-products/#:~:text=Consumer%20shift%20towards%20buying%20sustainable%20products%20over%20the%20past%20five%20years%202022&text=In%202022%2C%20the%20vast%20majority,compared%20to%20five%20years%20earlier.

Yalegama, L., Nedra, D., Sivakanesan, R. y Jayasekara, C. (2013). Chemical and functional properties of fibre concentrates obtained from by-products of coconut kernel. Food Chemistry, 141(1), 124–130. https://doi.org/10.1016/j.foodchem.2013.02.118

Zambrano, R. y Guerrero, J. (2022). La Industrialización del Coco y sus Derivados para el Desarrollo Económico de la Parroquia Riochico del Cantón Portoviejo [Universidad Estatal del Sur de Manabí]. https://repositorio.unesum.edu.ec/handle/53000/4124

Descargas

Publicado

2024-05-30

Cómo citar

Briones Bermeo , A. J., & Verduga Erazo , J. S. (2024). Fibra de coco como residuo agroindustrial para la elaboración de macetas biodegradables. Dominio De Las Ciencias, 10(2), 1229–1248. https://doi.org/10.23857/dc.v10i2.3876

Número

Sección

Artí­culos Cientí­ficos