Fibra de coco como residuo agroindustrial para la elaboración de macetas biodegradables
DOI:
https://doi.org/10.23857/dc.v10i2.3876Palabras clave:
Macetas biodegradables, Fibra de coco, ; Resistencia mecánica, DegradaciónResumen
En un mundo donde la preservación del medio ambiente se ha convertido en una prioridad innegable, es crucial explorar opciones sustentables y amigables para tratar los residuos agroindustriales y así reducir el impacto ambiental. En este contexto, el presente estudio investigó la viabilidad de utilizar fibra de coco para fabricar macetas biodegradables. Para ello, se llevó a cabo un experimento con tres tipos de tratamientos a base de fibra de coco, almidón de maíz y vinagre en distintas concentraciones, todos evaluados estadísticamente mediante un ANOVA y el test de Tukey. Los resultados obtenidos mostraron un impacto significativo, tanto a nivel estadístico como práctico. El tratamiento T3 exhibió la mayor resistencia mecánica, con valores de 0.32 kN (compresión) y 0.71 kN (tracción). El tratamiento T2 presentó la mayor capacidad de absorción de agua inicialmente (46%), pero luego las macetas del tratamiento T3 superaron a las del tratamiento T1 en absorción. En cuanto a la degradación, el tratamiento T2 destacó con un 46% de degradación, seguido por T1 (18.88%) y T3 (10.75%). En conclusión, las macetas biodegradables fabricadas con fibra de coco en el tratamiento T3 exhibe la mayor resistencia mecánica, con valores de 0.32 kN (compresión) y 0.71 kN (tracción), así como una capacidad de absorción de agua que supera a la del tratamiento T1 a lo largo del tiempo, lo que lo posiciona como la opción más adecuada para aplicaciones que necesitan una combinación de durabilidad y retención de agua a largo plazo.
Citas
Ahmad, J., Majdi, A., Al-Fakih, A., Deifalla, A., Althoey, F., El Ouni, M. y El-Shorbagy, M. (2022). Mechanical and Durability Performance of Coconut Fiber Reinforced Concrete: A State-of-the-Art Review. Materials, 15(10), 3601. https://doi.org/10.3390/ma15103601
Ahmad, J., Manan, A., Ali, A., Khan, M. W., Asim, M. y Zaid, O. (2020). A Study on Mechanical and Durability Aspects of Concrete Modified with Steel Fibers (SFs). Civil Engineering and Architecture, 8(5), 814–823. https://doi.org/10.13189/cea.2020.080508
Ali, M. (2020). Coconut fibre – A versatile material and its applications in engineering. 2(9), . 189-197.
Amsamani, S., Aneetta, V. y Naveena, C. (2023). Eco-Pots: An Alternative to Plastic Sapling Bags. In: Muthu, S.S. (eds) Novel Sustainable Raw Material Alternatives for the Textiles and Fashion Industry. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. https://doi.org/10.1007/978-3-031-37323-7_9
Artigas, V., Quintana, M., Positieri, M. y Oshiro, Á. (2022). Efectos de la utilizatión de desecho de polvo de perlita natural em hormigones autocompactantes coloreados. Concreto & Construções, XLIX(105), 42–47. https://doi.org/10.4322/1809-7197.2022.105.0003
Atoshi, M. A. y Gani, J. (2023). Characterization Of Heterogenous Catalyst Produced By Physical Activation Of Cocos Nucifera Shell Waste. 7(2). https://doi.org/10.56892/bima.v7i02.%201.463
Awoyera, P., Odutuga, O., Effiong, J., De Jesus, A., Mortazavi, S. y Hu, J. (2022). Development of Fibre-Reinforced Cementitious Mortar with Mineral Wool and Coconut Fibre. Materials, 15(13), 4520. https://doi.org/10.3390/ma15134520
Ayilara, M., Olanrewaju, O., Babalola, O. y Odeyemi, O. (2020). Waste Management through Composting: Challenges and Potentials. Sustainability, 12(11), 4456. https://doi.org/10.3390/su12114456
Basurto, C. y Vera, M. (2022). Evaluación de los residuos agrícolas cascarilla de arroz (Oryza sativa) y fibra de coco (Cocos nucifera) como sustratos para sistemas acuapónicos [Esceula Superior Politécnica agropecuaria de Manabí - Manuel Félix López]. https://repositorio.espam.edu.ec/handle/42000/1922
Bui, H., Sebaibi, N., Boutouil, M. y Levacher, D. (2020). Determination and Review of Physical and Mechanical Properties of Raw and Treated Coconut Fibers for Their Recycling in Construction Materials. Fibers, 8(6), 37. https://doi.org/10.3390/fib8060037
Cerrato, M. D., Ribas, A., Cardona, C. y Gil, L. (2021). Species introductions through coconut fibre: Dactyloctenium aegyptium and Glinus oppositifolius, new records for the Balearic Islands, Spain. Acta Botanica Croatica, 80(2), 221–224. https://doi.org/10.37427/botcro-2021-023
Chaves, Y., Da Silveira, P., Monteiro, S. y Nascimento, L. (2023). Babassu Coconut Fibers: Investigation of Chemical and Surface Properties (Attalea speciosa.). Polymers, 15(19), 3863. https://doi.org/10.3390/polym15193863
Ciccarelli, L., Cloppenburg, F., Ramaswamy, S., Lomov, S. V., Van, A., Vo Hong, N., Chi Thanh, T., Minh Tri, N. y Thomas, G. (2020). Sustainable composites: Processing of coir fibres and application in hybrid-fibre composites. Journal of Composite Materials, 54(15), 1947–1960. https://doi.org/10.1177/0021998319886108
Dahal, S., Yilma, W., Sui, Y., Atreya, M., Bryan, S., Davis, V., Whiting, G. L. y Khosla, R. (2020). Degradability of Biodegradable Soil Moisture Sensor Components and Their Effect on Maize (Zea mays L.) Growth. Sensors, 20(21), 6154. https://doi.org/10.3390/s20216154
De Azevedo, A., Amin, M., Hadzima, M., Saad, I., Zeyad, A., Tayeh, B. y Adesina, A. (2022). Possibilities for the application of agro-industrial wastes in cementitious materials: A brief review of the Brazilian perspective. Cleaner Materials, 3, 100040. https://doi.org/10.1016/j.clema.2021.100040
Fuentes, R., Berthe, J., Barbosa, S. y Castillo, L. (2021). Development of biodegradable pots from different agroindustrial wastes and byproducts. 30. https://doi.org/10.1016/j.susmat.2021.e00338
Grand, H. (2022). Abaca Fiber Market Size, Share & Trends Analysis Report By Product (Pulp & Paper, Fiber Craft, Cordage, Textile), By Region (North America, Asia Pacific, Europe, Central & South America, MEA), And Segment Forecasts, 2021—2028 (GVR-4-68039-517-3; p. 133). https://www.grandviewresearch.com/industry-analysis/abaca-fiber-market#
Gu, M., Ahmad, W., Alaboud, T., Zia, A., Akmal, U., Awad, Y. y Alabduljabbar, H. (2022). Scientometric Analysis and Research Mapping Knowledge of Coconut Fibers in Concrete. Materials, 15(16), 5639. https://doi.org/10.3390/ma15165639
Hasan, K., Horváth, P., Bak, M. y Alpár, T. (2021). A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Advances, 11(18), 10548–10571. https://doi.org/10.1039/D1RA00231G
Instituto Nacional de Estadística y Censos [INEC]. (2020). Municipales 2020 [Ecuador en Cifras]. https://www.ecuadorencifras.gob.ec/gad-municipales-2020/
Ismail, S., Akpan, E. y Dhakal, H. (2022). Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives. Composites Part C: Open Access, 9, 100322. https://doi.org/10.1016/j.jcomc.2022.100322
Jan, K., Riar, C.. y Saxena, D. (2015). Engineering and functional properties of biodegradable pellets developed from various agro-industrial wastes using extrusion technology. Journal of Food Science and Technology, 52(12), 7625–7639. https://doi.org/10.1007/s13197-015-1938-5
Juanga, J. y Yuan, Q. (2021). Making Biodegradable Seedling Pots from Textile and Paper Waste—Part A: Factors Affecting Tensile Strength. International Journal of Environmental Research and Public Health, 18(13), 6964. https://doi.org/10.3390/ijerph18136964
Kochova, K., Gauvin, F., Schollbach, K. y Brouwers, H. (2020). Using alternative waste coir fibres as a reinforcement in cement-fibre composites. Construction and Building Materials, 231, 117121. https://doi.org/10.1016/j.conbuildmat.2019.117121
Kramar, A. y González, J. (2023). Preparation of cellulose acetate film with dual hydrophobic-hydrophilic properties using solution blow spinning. Materials & Design, 227, 111788. https://doi.org/10.1016/j.matdes.2023.111788
Llamas, A., Vázquez, J., Balderrama, J., Reyes, J. y Pedraza, M. (2019). Prototipo de urna funeraria eco- lógica elaborada con fibra de coco. 2(2), 100–106.
MacLeod, M., Arp, H., Tekman, M. y Jahnke, A. (2021). The global threat from plastic pollution. Science, 373(6550), 61–65. https://doi.org/10.1126/science.abg5433
Maertens, L. (2021). Climatizing the UN Security Council. International Politics, 58(4), 640–660. https://doi.org/10.1057/s41311-021-00281-9
Martinelli, F.., Pariz, M. G., De Andrade, R., Ferreira, S., Marques, F., Monteiro, S. y De Azevedo, A. (2024). Influence of drying temperature on coconut-fibers. Scientific Reports, 14(1), 6421. https://doi.org/10.1038/s41598-024-56596-z
Martinelli, F., Ribeiro, F., Marvila, M., Monteiro, S., Filho, F. y Azevedo, A. (2023). A Review of the Use of Coconut Fiber in Cement Composites. Polymers, 15(5), 1309. https://doi.org/10.3390/polym15051309
Mathavan, M., Sakthieswaran, N. y Ganesh Babu, O. (2021). Experimental investigation on strength and properties of natural fibre reinforced cement mortar. Materials Today: Proceedings, 37, 1066–1070. https://doi.org/10.1016/j.matpr.2020.06.295
Mohanavel, V., Suresh Kumar, S., Vairamuthu, J., Ganeshan, P. y NagarajaGanesh, B. (2022). Influence of Stacking Sequence and Fiber Content on the Mechanical Properties of Natural and Synthetic Fibers Reinforced Penta-Layered Hybrid Composites. Journal of Natural Fibers, 19(13), 5258–5270. https://doi.org/10.1080/15440478.2021.1875368
Montoya, M., Espinal, M., Bello, I. P., López, C., Mendoza, E., Bravo, C. y López, P. (2022). Elaboración de bioplásticos a base de cáscara de plátano (musa paradisiaca) y almidón de maíz (zea mays). Ciencia Latina Revista Científica Multidisciplinar, 6(4), 2385–2401. https://doi.org/10.37811/cl_rcm.v6i4.2763
Navarro, P. (2023). Latin America: Top exporters of coconut oil 2018, based on export value [Statista]. https://www.statista.com/statistics/875788/export-value-coconut-oil-latin-america-country/
Nunes, L., Silva, M., Gerber, J. y Kalid, R. (2020). Waste green coconut shells: Diagnosis of the disposal and applications for use in other products. Journal of Cleaner Production, 255, 120169. https://doi.org/10.1016/j.jclepro.2020.120169
Ogunbiyi, O., Gbenebor, O., Salifu, S., Olaleye, S., Jamiru, T., Sadiku, R. y Adeosun, S. (2022). Strength Characteristics of Electrospun Coconut Fibre Reinforced Polylactic Acid: Experimental and Representative Volume Element (RVE) Prediction. Materials, 15(19), 6676. https://doi.org/10.3390/ma15196676
Ozoh, A., Longe, B., Akpe, V. y Cock, I. (2021). Indiscriminate Solid Waste Disposal and Problems with Water-Polluted Urban Cities in Africa. 24(1–7).
Palanisamy, E. y Ramasamy, M. (2022). Dependency of Sisal and Banana Fiber on Mechanical and Durability Properties of Polypropylene Hybrid Fiber Reinforced Concrete. Journal of Natural Fibers, 19(8), 3147–3157. https://doi.org/10.1080/15440478.2020.1840477
Patel, A., Temgire, S. y Borah, A. (2021). Agro-industrial waste as source of bioactive compounds and their utilization: A review. The Pharma Innovation, 10(5), 192–196. https://doi.org/10.22271/tpi.2021.v10.i5c.6197
Piña Ramírez, C., Del Río Merino, M., Viñas Arrebola, C., Vidales Barriguete, A. y Kosior-Kazberuk, M. (2019). Analysis of the mechanical behaviour of the cement mortars with additives of mineral wool fibres from recycling of CDW. Construction and Building Materials, 210, 56–62. https://doi.org/10.1016/j.conbuildmat.2019.03.062
Raman, V. Kumar, P., Sunagar, P., Bommanna, K., Vezhavendhan, R., Bhattacharya, S., Prabhu, S. y Sasikumar, B. (2022). Investigation on Mechanical Properties of Bamboo and Coconut Fiber with Epoxy Hybrid Polymer Composite. Advances in Polymer Technology, 2022, 1–5. https://doi.org/10.1155/2022/9133411
Ricciardi, P., Cillari, G., Carnevale Miino, M. y Collivignarelli, M. C. (2020). Valorization of agro-industry residues in the building and environmental sector: A review. Waste Management & Research, 38(5), 487–513. https://doi.org/10.1177/0734242X20904426
Salama, H., Abdelhamid, S. y Dairouty, R. (2019). Coconut Bio-yoghurt Phytochemical-chemical and Antimicrobial-microbial Activities. 22(11), 527–536. https://doi.org/doi: 10.3923/pjbs.2019.527.536.
Sekar, A. y Kandasamy, G. (2018). Optimization of Coconut Fiber in Coconut Shell Concrete and Its Mechanical and Bond Properties. Materials, 11(9), 1726. https://doi.org/10.3390/ma11091726
Sultana, N., Hossain, S., Alam, M., Hashish, M. y Islam, M. (2020). An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete. Construction and Building Materials, 243, 118216. https://doi.org/10.1016/j.conbuildmat.2020.118216
Sun, S., Gao, Z., Li, Z., Li, Y., Gao, J.., Yuan-Jun, C., Li, H., Liu, X. y Wang, Z. (2020). Effect of Wood Vinegar on Adsorption and Desorption of Four Kinds of Heavy (loid) Metals Adsorbents. Chinese Journal of Analytical Chemistry, 48(2), e20013–e20020. https://doi.org/10.1016/S1872-2040(19)61217-X
Sun, X., Liu, X., Yang, X. y Song, B. (2021). Computer-Aided Three-Dimensional Ceramic Product Design. Computer-Aided Design and Applications, 19(S3), 97–107. https://doi.org/10.14733/cadaps.2022.S3.97-107
Tawasil, D., Aminudin, E., Abdul Shukor Lim, N., Nik Soh, N., Leng, P., Ling, G. y Ahmad, M. (2021). Coconut Fibre and Sawdust as Green Building Materials: A Laboratory Assessment on Physical and Mechanical Properties of Particleboards. Buildings, 11(6), 256. https://doi.org/10.3390/buildings11060256
Tighe, D. (2023). Consumer shift towards buying sustainable products over the past five years 2022 [Panel survey]. Statista. https://www.statista.com/statistics/1377869/global-shift-to-buying-sustainable-products/#:~:text=Consumer%20shift%20towards%20buying%20sustainable%20products%20over%20the%20past%20five%20years%202022&text=In%202022%2C%20the%20vast%20majority,compared%20to%20five%20years%20earlier.
Yalegama, L., Nedra, D., Sivakanesan, R. y Jayasekara, C. (2013). Chemical and functional properties of fibre concentrates obtained from by-products of coconut kernel. Food Chemistry, 141(1), 124–130. https://doi.org/10.1016/j.foodchem.2013.02.118
Zambrano, R. y Guerrero, J. (2022). La Industrialización del Coco y sus Derivados para el Desarrollo Económico de la Parroquia Riochico del Cantón Portoviejo [Universidad Estatal del Sur de Manabí]. https://repositorio.unesum.edu.ec/handle/53000/4124
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Antony Javier Briones Bermeo , Josué Salvador Verduga Erazo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.