Terapia génica mediante el Crispr/Cass en el síndrome de Hutchinson Gilford
DOI:
https://doi.org/10.23857/dc.v9i2.3424Palabras clave:
Terapia génica, Sistemas CRISPR-Cas, progeria, envejecimiento prematuroResumen
El síndrome de Hutchinson Gilford se define como un trastorno con patrón de herencia autosómica dominantes que se observa desde la edad pediátrica generando la aparición del envejecimiento prematuro acelerado dado por una mutación genética. El diagnóstico generalmente se lo realiza en el primer año de vida por las manifestaciones clínicas que presentan estos pacientes. Los tratamientos hasta la actualidad aún se encuentran en investigación los cuales buscan hacer reversible los efectos que causa esta enfermedad, además de poder evitar que se manifieste. El presente trabajo consiste en una revisión bibliográfica, en la cual se realizaron búsquedas en las bases científicas digitales.
Citas
Lamis A, Siddiqui SW, Ashok T, Patni N, Fatima M, Aneef AN. Hutchinson-Gilford Progeria Syndrome: A Literature Review. Cureus. 2022;14(8):e28629. doi:10.7759/cureus.28629. https://pubmed.ncbi.nlm.nih.gov/36196312/
Zhang SL, Lin SZ, Zhou YQ, et al. Clinical manifestations and gene analysis of Hutchinson-Gilford progeria syndrome: A case report. World J Clin Cases. 2022;10(15):5018-5024. doi:10.12998/wjcc.v10.i15.5018. https://pubmed.ncbi.nlm.nih.gov/35801028/
Sánchez-López A, Espinós-Estévez C, González-Gómez C, et al. Cardiovascular Progerin Suppression and Lamin A Restoration Rescue Hutchinson-Gilford Progeria Syndrome. Circulation. 2021;144(22):1777-1794. doi:10.1161/CIRCULATIONAHA.121.055313. https://pubmed.ncbi.nlm.nih.gov/34694158/
The Progeria Research Foundation | Together, We Will Find the Cure! Accessed April 17, 2023. https://www.progeriaresearch.org/
Guilbert SM, Cardoso D, Lévy N, Muchir A, Nissan X. Hutchinson-Gilford progeria syndrome: Rejuvenating old drugs to fight accelerated ageing. Methods San Diego Calif. 2021;190:3-12. doi:10.1016/j.ymeth.2020.04.005. https://pubmed.ncbi.nlm.nih.gov/32278808/
Piekarowicz K, Machowska M, Dzianisava V, Rzepecki R. Hutchinson-Gilford Progeria Syndrome-Current Status and Prospects for Gene Therapy Treatment. Cells. 2019;8(2):88. doi:10.3390/cells8020088. https://pubmed.ncbi.nlm.nih.gov/30691039/
De Sales-Palestina LA, Palacios-Rosas E, De Sales-Palestina LA, Palacios-Rosas E. Síndrome de Progeria Hutchinson-Gilford. Multimed. 2022;26(5). Accessed April 17, 2023. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1028-48182022000500009&lng=es&nrm=iso&tlng=es
Pachajoa H, Claros-Hulbert A, García-Quintero X, Perafan L, Ramirez A, Zea-Vera AF. Hutchinson–Gilford Progeria Syndrome: Clinical and Molecular Characterization. Appl Clin Genet. 2020;13:159-164. doi:10.2147/TACG.S238715. https://pubmed.ncbi.nlm.nih.gov/32943904/
Catarinella G, Nicoletti C, Bracaglia A, et al. SerpinE1 drives a cell-autonomous pathogenic signaling in Hutchinson-Gilford progeria syndrome. Cell Death Dis. 2022;13(8):737. doi:10.1038/s41419-022-05168-y. https://pubmed.ncbi.nlm.nih.gov/36028501/
Luke W. Koblan, Michael R. Erdos, Christopher Wilson, Wayne A. Cabral, Jonathan M. Levy, Zheng-Mei Xiong, Urraca L. Tavarez, Lindsay M. Davison, Yantenew G. Gete, Xiaojing Mao, Gregory A. Newby, Sean P. Doherty, Narisu Narisu, Quanhu Sheng, Chad Krilow, Charles Y. Lin, Leslie B. Gordon, Kan Cao, Francis S. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice | Nature. Nature. Published online January 6, 2021:608-614. doi:https://doi.org/10.1038/s41586-020-03086-7. https://www.nature.com/articles/s41586-020-03086-7
Beyret E, Liao HK, Yamamoto M, et al. Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome. Nat Med. 2019;25(3):419-422. doi:10.1038/s41591-019-0343-4. https://pubmed.ncbi.nlm.nih.gov/30778240/
Harhouri K, Frankel D, Bartoli C, Roll P, De Sandre-Giovannoli A, Lévy N. An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucl Austin Tex. 2018;9(1):246-257. doi:10.1080/19491034.2018.1460045. https://pubmed.ncbi.nlm.nih.gov/29619863/
Gete YG, Koblan LW, Mao X, et al. Mechanisms of angiogenic incompetence in Hutchinson-Gilford progeria via downregulation of endothelial NOS. Aging Cell. 2021;20(7):e13388. doi:10.1111/acel.13388. https://pubmed.ncbi.nlm.nih.gov/34086398/
Zironi I, Gavoçi E, Lattanzi G, et al. BK channel overexpression on plasma membrane of fibroblasts from Hutchinson-Gilford progeria syndrome. Aging. 2018;10(11):3148-3160. doi:10.18632/aging.10162. https://pubmed.ncbi.nlm.nih.gov/30398975/
Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson-Gilford Progeria Syndrome: A Premature Aging Disease. Mol Neurobiol. 2018;55(5):4417-4427. doi:10.1007/s12035-017-0610-7. https://pubmed.ncbi.nlm.nih.gov/28660486/
Rahman MM, Ferdous KS, Ahmed M, et al. Hutchinson-Gilford Progeria Syndrome: An Overview of the Molecular Mechanism, Pathophysiology and Therapeutic Approach. Curr Gene Ther. 2021;21(3):216-229. doi:10.2174/1566523221666210303100805. https://pubmed.ncbi.nlm.nih.gov/33655857/
Aveleira CA, Ferreira-Marques M, Cortes L, et al. Neuropeptide Y Enhances Progerin Clearance and Ameliorates the Senescent Phenotype of Human Hutchinson-Gilford Progeria Syndrome Cells. J Gerontol A Biol Sci Med Sci. 2020;75(6):1073-1078. doi:10.1093/gerona/glz280. https://pubmed.ncbi.nlm.nih.gov/32012215/
Camacho-Cruz, J., Dary Gutiérrez-Castañeda, L., Pulido, D., Echeverri, C., Bernal, B., Bautista, L., Angarita, L., Villamil, A., Guarin, L., Benavides, V., Lancheros, N., Pardo, J., Bautista, M. Hutchinson-Gilford Progeria Syndrome. International Journal of Pediatrics. 2019;7(10):10283-10289. doi:https://doi.org/10.22038/ijp.2019.42913.3592.https://ijp.mums.ac.ir/article_13901.html
Guedenon KM, Doubaj Y, Akolly DAE, et al. Hutchinson-Gilford Progeria syndrome: Report of the first Togolese case. Am J Med Genet A. 2020;182(6):1316-1320. doi:10.1002/ajmg.a.61581. https://pubmed.ncbi.nlm.nih.gov/32297714/
Monnerat G, Evaristo GPC, Evaristo JAM, et al. Metabolomic profiling suggests systemic signatures of premature aging induced by Hutchinson-Gilford progeria syndrome. Metabolomics Off J Metabolomic Soc. 2019;15(7):100. doi:10.1007/s11306-019-1558-6. https://pubmed.ncbi.nlm.nih.gov/31254107/
Vermeij WP, Hoeijmakers JHJ. Base editor repairs mutation found in the premature-ageing syndrome progeria. Nature. 2021;589(7843):522-524. doi:10.1038/d41586-020-03573-x. https://www.nature.com/articles/d41586-020-03573-x
Benedicto I, Dorado B, Andrés V. Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models. Cells. 2021;10(5):1157. doi:10.3390/cells10051157. https://pubmed.ncbi.nlm.nih.gov/34064612/
Dorado B, Pløen GG, Barettino A, et al. Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome. Cell Discov. 2019;5:16. doi:10.1038/s41421-019-0084-z. https://pubmed.ncbi.nlm.nih.gov/30911407/
Sistema CRISPR/Cas: Edición genómica de precisión. Accessed April 17, 2023. http://scielo.iics.una.py/scielo.php?script=sci_arttext&pid=S1812-95282020000100097
Rajeev M, Ratan C, Krishnan K, Vijayan M. Hutchinson-Gilford Progeria Syndrome (Hgps) and Application of Gene Therapy Based Crispr/Cas Technology as A Promising Innovative Treatment Approach. Recent Pat Biotechnol. 2021;15(4):266-285. doi:10.2174/1872208315666210928114720. https://pubmed.ncbi.nlm.nih.gov/34602042/
Santiago-Fernández O, Osorio FG, Quesada V, et al. Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. Nat Med. 2019;25(3):423-426. doi:10.1038/s41591-018-0338-6. https://pubmed.ncbi.nlm.nih.gov/30778239/
Benedicto I, Chen X, Bergo MO, Andrés V. Progeria: a perspective on potential drug targets and treatment strategies. Expert Opin Ther Targets. 2022;26(5):393-399. doi:10.1080/14728222.2022.2078699. https://pubmed.ncbi.nlm.nih.gov/35575136/
Saxena S, Shukla D. The pursuit of therapy for progeria. Aging. 2021;13(12):15697-15698. doi:10.18632/aging.203254. https://pubmed.ncbi.nlm.nih.gov/34176790/
Dreesen O, Kennedy B. Hutchinson-Gilford Progeria paves the way for novel targeted anti-aging therapies. Med N Y N. 2021;2(4):353-354. doi:10.1016/j.medj.2021.03.005. https://pubmed.ncbi.nlm.nih.gov/35590156/
Musunuru K. Adenine base editing to treat progeria syndrome and extend the lifespan. J Cardiovasc Aging. 2021;1:8. doi:10.20517/jca.2021.10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302045/
Lai WF, Wong WT. Progress and trends in the development of therapies for Hutchinson-Gilford progeria syndrome. Aging Cell. 2020;19(7):e13175. doi:10.1111/acel.13175. https://pubmed.ncbi.nlm.nih.gov/32596971/
Marcos-Ramiro B, Gil-Ordóñez A, Marín-Ramos NI, et al. Isoprenylcysteine Carboxylmethyltransferase-Based Therapy for Hutchinson-Gilford Progeria Syndrome. ACS Cent Sci. 2021;7(8):1300-1310. doi:10.1021/acscentsci.0c01698. https://pubmed.ncbi.nlm.nih.gov/34471675/
Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Small-Molecule Therapeutic Perspectives for the Treatment of Progeria. Int J Mol Sci. 2021;22(13):7190. doi:10.3390/ijms22137190. https://pubmed.ncbi.nlm.nih.gov/36196312/
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Kerly Lizbeth Sanchez Eras, Cristian Carlos Ramírez Portilla
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.