Sistema de monitoreo en tiempo real de movimientos de masa en Cuenca, mediante redes GSM-GPS.

Autores/as

Palabras clave:

GPS, Monitoreo, Movimientos, Acelerómetro, Deslizamiento.

Resumen

En este artículo, se desarrollará una implementación de un sistema de monitoreo, en varias zonas de riesgo de movimientos de ladera, en el cantón Cuenca de Ecuador. A través del armado de múltiples GPS con sus respectivos componentes, se pretende en tiempo real determinar los posibles movimientos en deslizamiento que se producen en dichas zonas, generando un mensaje de texto, al detectar movimientos con el acelerómetro. De acuerdo con la metodología propuesta, se obtendrá las coordenadas de dirección: latitud, longitud y latitud, mismas que pueden servir, para realizar seguimientos durante un tiempo determinado, para ver si ha existido algún tipo de desplazamientos en dichas zonas de estudio. Una vez realizado, las pruebas de campo con los equipos GPS, se establece que son funcionales y rentables respecto a los que existe en el mercado.

Palabras clave: GPS; Monitoreo; Movimientos; Acelerómetro; Deslizamiento.

Biografía del autor/a

Rafael Antonio Vázquez Ortiz, Consultor

Ingeniero Civil, Posgradista, Maestría en Ingeniería Civil con Mención en Estructuras Sismorresistentes. Universidad Católica de Cuenca, Azuay, Ecuador.

Citas

Benoit, L., Briole, P., Martin, O., Thom, C., Malet, J.-P., & Ulrich, P. (2015). Monitoring landslide displacements with the Geocube wireless network of low-cost GPS. Engineering Geology, 195, 111–121. https://doi.org/https://doi.org/10.1016/j.enggeo.2015.05.020

Chan, Y. J., & Huang, J.-W. (2017). Multiple-point vibration testing with micro-electromechanical accelerometers and micro-controller unit. Mechatronics, 44, 84–93. https://doi.org/https://doi.org/10.1016/j.mechatronics.2017.04.006

Coral, C., Bokelmann, W., Bonatti, M., Carcamo, R., & Sieber, S. (2021). Understanding institutional change mechanisms for land use: Lessons from Ecuador’s history. Land Use Policy, 108, 105530. https://doi.org/https://doi.org/10.1016/j.landusepol.2021.105530

Delgado, D., Sadaoui, M., Ludwig, W., & Méndez, W. (2022). Spatio-temporal assessment of rainfall erosivity in Ecuador based on RUSLE using satellite-based high frequency GPM-IMERG precipitation data. CATENA, 219, 106597. https://doi.org/https://doi.org/10.1016/j.catena.2022.106597

Du, J.-C., & Teng, H.-C. (2007). 3D laser scanning and GPS technology for landslide earthwork volume estimation. Automation in Construction, 16(5), 657–663. https://doi.org/https://doi.org/10.1016/j.autcon.2006.11.002

Kathpalia, N., & Gulati, T. (2022). 3 Axis Gyro Accelerometer & Artificial Intelligence based Enhancement of GPS Accuracy. Measurement: Sensors, 100618. https://doi.org/https://doi.org/10.1016/j.measen.2022.100618

Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S. (2021). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, 100364. https://doi.org/https://doi.org/10.1016/j.cosrev.2021.100364

Meje, K. C., Bokopane, L., Kusakana, K., & Siti, M. (2021). Real-time power dispatch in a standalone hybrid multisource distributed energy system using an Arduino board. Energy Reports, 7, 479–486. https://doi.org/https://doi.org/10.1016/j.egyr.2021.08.016

Neuberg, J. W., Collinson, A. S. D., Mothes, P. A., C. Ruiz, M., & Aguaiza, S. (2018). Understanding cyclic seismicity and ground deformation patterns at volcanoes: Intriguing lessons from Tungurahua volcano, Ecuador. Earth and Planetary Science Letters, 482, 193–200. https://doi.org/https://doi.org/10.1016/j.epsl.2017.10.050

Om Venkat Pavan Kumar, A., Nandini, D., Manobi Sairam, M., & Madhusudan, B. P. (2021). Development of GPS & GSM based advanced system for tracking vehicle speed violations and accidents. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.07.051

Othman, S. E., Salama, G. M., & Hamed, H. F. A. (2021). Methodology for the remote transfer of GPS receiver station data through a GSM network. Heliyon, 7(11), e08330. https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e08330

Sanghavi, K., Sanghavi, M., & Rajurkar, A. M. (2021). Early stage detection of Downey and Powdery Mildew grape disease using atmospheric parameters through sensor nodes. Artificial Intelligence in Agriculture, 5, 223–232. https://doi.org/https://doi.org/10.1016/j.aiia.2021.10.001

Squarzoni, C., Delacourt, C., & Allemand, P. (2005). Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Engineering Geology, 79(3), 215–229. https://doi.org/https://doi.org/10.1016/j.enggeo.2005.01.015

Su, Y., Wang, J., Li, D., Wang, X., Hu, L., Yao, Y., & Kang, Y. (2023). End-to-end deep learning model for underground utilities localization using GPR. Automation in Construction, 149, 104776. https://doi.org/https://doi.org/10.1016/j.autcon.2023.104776

Torres-Quezada, J., Torres Avilés, A., Isalgue, A., & Pages-Ramon, A. (2022). The evolution of embodied energy in andean residential buildings. Methodology applied to Cuenca-Ecuador. Energy and Buildings, 259, 111858. https://doi.org/https://doi.org/10.1016/j.enbuild.2022.111858

Wang, H., Ji, F., Zhan, X., Tan, C., & Feng, C. (2022). Sensitivity evaluation of landslide geological hazards based on Multi-source Remote Sensing Data. Optik, 170481. https://doi.org/https://doi.org/10.1016/j.ijleo.2022.170481

Wang, P., Liu, H., Nie, G., Yang, Z., Wu, J., Qian, C., & Shu, B. (2022). Performance evaluation of a real-time high-precision landslide displacement detection algorithm based on GNSS virtual reference station technology. Measurement, 199, 111457. https://doi.org/https://doi.org/10.1016/j.measurement.2022.111457

Zhu, X., Xu, Q., Zhou, J., & Deng, M. (2012). Remote Landslide Observation System with Differential GPS. Procedia Earth and Planetary Science, 5, 70–75. https://doi.org/https://doi.org/10.1016/j.proeps.2012.01.012

Descargas

Publicado

2023-03-14

Cómo citar

Vázquez Ortiz, R. A. ., Maldonado Noboa, C. H. ., & Maldonado Noboa , J. S. . (2023). Sistema de monitoreo en tiempo real de movimientos de masa en Cuenca, mediante redes GSM-GPS. Dominio De Las Ciencias, 9(2), 3–25. Recuperado a partir de https://dominiodelasciencias.com/ojs/index.php/es/article/view/3252

Número

Sección

Artí­culos Cientí­ficos