Predicción de la concentración de cloroformo en el proceso de destilación de una mezcla metanol-cloroformo mediante ARN

Autores/as

DOI:

https://doi.org/10.23857/dc.v8i3.2817

Palabras clave:

ARN, DWSIM, cloroformo, destilación

Resumen

En este trabajo se realiza la simulación mediante el software de código abierto DWSIM de un sistema de destilación por oscilación de presión de la mezcla azeotrópica metanol-cloroformo para posteriormente predecir por redes neuronales artificiales (ARN) la concentración de cloroformo. El modelo de predicción desarrollado utiliza una capa oculta con 100 neuronas. La temperatura y la fracción molar de cloroformo en la alimentación, la relación de reflujo y temperatura de reboiler en la columna de baja y alta presión se han seleccionado como variables de entrada y la fracción molar de cloroformo y velocidad de flujo en el destilado y residuo de las columnas como variables de salida. El coeficiente de correlación de Pearson de 0.999, el error cuadrótico medio de 1.52 e-14 y el anólisis ANOVA (P-value > 0.05) confirman que no existe una diferencia estadí­sticamente significativa entre los datos experimentales y los valore predichos por la ARN, lo cual indica que la capacidad de predicción de la ARN es satisfactoria y que puede ser empleada para la predicción de la concentración cloroformo en el sistema.

Biografía del autor/a

Daniel Antonio Chuquín Vasco, Polo de Capacitación, Investigación y Publicación (POCAIP) 001

Ingeniero Químico, Escuela Superior Politécnica de Chimborazo (ESPOCH), Grupo de Investigación en Seguridad, Ambiente e Ingeniería (GISAI), Riobamba, Ecuador.

Bryan David Rosario Rosero

Ingeniero Químico, Investigador independiente, Riobamba, Ecuador.

Nelson Santiago Chuquín Vasco

Ingeniero Mecánico, Escuela Superior Politécnica de Chimborazo (ESPOCH), Grupo de Investigación en Seguridad, Ambiente e Ingeniería (GISAI), Riobamba, Ecuador.

Juan Pablo Chuquín Vasco

Ingeniero Mecánico, Escuela Superior Politécnica de Chimborazo (ESPOCH), Grupo de Investigación en Seguridad, Ambiente e Ingeniería (GISAI), Riobamba, Ecuador.

Citas

Alblawi, A. (2020). Fault diagnosis of an industrial gas turbine based on the thermodynamic model coupled with a multi feedforward artificial neural networks. Energy Reports. https://doi.org/10.1016/j.egyr.2020.04.029

An, Y., Li, W., Li, Y., Huang, S., Ma, J., Shen, C., & Xu, C. (2015). Design/optimization of energy-saving extractive distillation process by combining preconcentration column and extractive distillation column. Chemical Engineering Science. https://doi.org/10.1016/j.ces.2015.05.003

Baiocco, G., Almonti, D., Guarino, S., Tagliaferri, F., Tagliaferri, V., & Ucciardello, N. (2020). Image-based system and artificial neural network to automate a quality control system for cherries pitting process. In Procedia CIRP. https://doi.org/10.1016/j.procir.2020.05.091

Chen, Yingyi, Song, L., Liu, Y., Yang, L., & Li, D. (2020). A review of the artificial neural network models for water quality prediction. Applied Sciences (Switzerland), 10(17). https://doi.org/10.3390/app10175776

Chen, Yixuan, Liu, C., & Geng, Z. (2018). Design and control of fully heat-integrated pressure swing distillation with a side withdrawal for separating the methanol/methyl acetate/acetaldehyde ternary mixture. Chemical Engineering and Processing: Process Intensification. https://doi.org/10.1016/j.cep.2017.11.013

Dantas, T. N. C., Cabral, T. J. O., Dantas Neto, A. A., & Moura, M. C. P. A. (2020). Enrichmnent of patchoulol extracted from patchouli (Pogostemon cablin) oil by molecular distillation using response surface and artificial neural network models. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2019.09.011

Fulgueras, A. M., Kim, D. S., & Cho, J. (2016). Modeling and optimization study of pressure-swing distillation for the separation process of acetone-methanol mixture with vapor-liquid equilibrium analysis. Journal of Chemical Engineering of Japan. https://doi.org/10.1252/jcej.14we424

Gupta, N., & Nigam, S. (2020). Crude Oil Price Prediction using Artificial Neural Network. In Procedia Computer Science. https://doi.org/10.1016/j.procs.2020.03.136

Hamad, A., & Dunn, R. F. (2002). Energy optimization of pressure-swing azeotropic distillation systems. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie020219h

Heo, S., & Lee, J. H. (2018). Fault detection and classification using artificial neural networks. IFAC-PapersOnLine. https://doi.org/10.1016/j.ifacol.2018.09.380

Horsley, L. H. (1947). Graphical method for predicting azeotropism and effect of pressure on azeotropic constants. Industrial and Engineering Chemistry. https://doi.org/10.1021/ba-1952-0006.ch004

Hosgor, E., Kucuk, T., Oksal, I. N., & Kaymak, D. B. (2014). Design and control of distillation processes for methanol-chloroform separation. Computers and Chemical Engineering, 67, 166–177. https://doi.org/10.1016/j.compchemeng.2014.03.026

Kim, W., Jeon, S. W., & Kim, Y. (2016). Model-based multi-objective optimal control of a VRF (variable refrigerant flow) combined system with DOAS (dedicated outdoor air system) using genetic algorithm under heating conditions. Energy. https://doi.org/10.1016/j.energy.2016.03.139

Knapp, J. P., & Doherty, M. F. (1992). A New Pressure-Swing-Distillation Process for Separating Homogeneous Azeotropic Mixtures. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie00001a047

Lee, J., Cho, J., Kim, D. M., & Park, S. (2011). Separation of tetrahydrofuran and water using pressure swing distillation: Modeling and optimization. Korean Journal of Chemical Engineering. https://doi.org/10.1007/s11814-010-0467-1

Li, R., Ye, Q., Suo, X., Dai, X., & Yu, H. (2016). Heat-Integrated Pressure-Swing Distillation Process for Separation of a Maximum-Boiling Azeotrope Ethylenediamine/Water. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2015.10.038

Li, W., Zhong, L., He, Y., Meng, J., Yao, F., Guo, Y., & Xu, C. (2015). Multiple Steady-States Analysis and Unstable Operating Point Stabilization in Homogeneous Azeotropic Distillation with Intermediate Entrainer. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.5b00572

Liang, S., Cao, Y., Liu, X., Li, X., Zhao, Y., Wang, Y., & Wang, Y. (2017). Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2016.10.040

Lladosa, E., Montón, J. B., & Burguet, M. C. (2011). Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressure-swing distillation: Computer simulation and economic optimization. Chemical Engineering and Processing: Process Intensification. https://doi.org/10.1016/j.cep.2011.07.010

Luyben, W. L. (2012). Pressure-swing distillation for minimum- and maximum-boiling homogeneous azeotropes. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie3002414

Luyben, W. L. (2013). Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Computers and Chemical Engineering. https://doi.org/10.1016/j.compchemeng.2012.10.014

Luyben, W. L. (2014). Control of a heat-integrated pressure-swing distillation process for the separation of a maximum-boiling azeotrope. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie502395h

Luyben, W. L. (2015). Improved design of an extractive distillation system with an intermediate-boiling solvent. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2015.10.020

Mahdi, T., Ahmad, A., Nasef, M. M., & Ripin, A. (2015). State-of-the-art technologies for separation of azeotropic mixtures. Separation and Purification Reviews. https://doi.org/10.1080/15422119.2014.963607

Medeiros, D. (2020). DWSIM - Open Source Process Simulator Web Site.

Mulia-Soto, J. F., & Flores-Tlacuahuac, A. (2011). Modeling, simulation and control of an internally heat integrated pressure-swing distillation process for bioethanol separation. Computers and Chemical Engineering. https://doi.org/10.1016/j.compchemeng.2011.03.011

Narasimha, P. L., Delashmit, W. H., Manry, M. T., Li, J., & Maldonado, F. (2008). An integrated growing-pruning method for feedforward network training. Neurocomputing. https://doi.org/10.1016/j.neucom.2007.08.026

Nolfi, S., & Parisi, D. (1997). Evolution of Artificial Neural Networks. Neural Networks.

Raíºl Rojas. (2013). Neural Networks: A Systematic Introduction. Berlin: Springer Science & Business Media. Retrieved from https://link.springer.com/book/10.1007/978-3-642-61068-4

Repke, J. U., Forner, F., & Klein, A. (2005). Separation of homogeneous azeotropic mixtures by pressure swing distillation - Analysis of the operation performance. Chemical Engineering and Technology. https://doi.org/10.1002/ceat.200500232

Roscoe, H. E. (1862). On the composition of the aqueous acids of constant boiling point. - Second communication. Journal of the Chemical Society. https://doi.org/10.1039/JS8621500270

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation. https://doi.org/10.1162/106365602320169811

Sun, K., Huang, S. hsuan, Jang, S. S., & Wong, D. S. H. (2016). Development of soft sensor with neural network and nonlinear variable selection for crude distillation unit process. In Computer Aided Chemical Engineering. https://doi.org/10.1016/B978-0-444-63428-3.50061-8

Tabares, H., Branch, J., & Valencia, J. (2006). Dynamic topology generation of an artificial neural network of the multilayer perceptron type. Revista Facultad de Ingenierí­a Universidad de Antioquia.

Wang, W., Van Gelder, P. H. A. J. M., & Vrijling, J. K. (2005). Some issues about the generalization of neural networks for time series prediction. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/11550907_88

Wang, Y., Bu, G., Wang, Y., Zhao, T., Zhang, Z., & Zhu, Z. (2016). Application of a simulated annealing algorithm to design and optimize a pressure-swing distillation process. Computers and Chemical Engineering. https://doi.org/10.1016/j.compchemeng.2016.09.014

Wasylkiewicz, S. K., Kobylka, L. C., & Castillo, F. J. L. (2003). Pressure sensitivity analysis of azeotropes. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie020079b

Wei, H. M., Wang, F., Zhang, J. L., Liao, B., Zhao, N., Xiao, F. K., … Sun, Y. H. (2013). Design and control of dimethyl carbonate-methanol separation via pressure-swing distillation. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie3034976

Widagdo, S., & Seider, W. D. (1996). Journal review. Azeotropic distillation. AIChE Journal. https://doi.org/10.1002/aic.690420110

Yaqub, M., Asif, H., Kim, S., & Lee, W. (2020). Modeling of a full-scale sewage treatment plant to predict the nutrient removal efficiency using a long short-term memory (LSTM) neural network. Journal of Water Process Engineering. https://doi.org/10.1016/j.jwpe.2020.101388

You, X., Rodriguez-Donis, I., & Gerbaud, V. (2015). Improved design and efficiency of the extractive distillation process for acetone-methanol with water. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie503973a

Yu, H., Ye, Q., Xu, H., Zhang, H., & Dai, X. (2015). Design and control of dividing-wall column for tert-butanol dehydration system via heterogeneous azeotropic distillation. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie504325g

Zhang, G., Eddy, P., & Hu, M. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35–62. https://doi.org/10.1016/S0169-2070(97)00044-7

Zhang, Z., Zhang, Q., Li, G., Liu, M., & Gao, J. (2016). Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/j.cjche.2016.06.013

Publicado

2022-07-07

Cómo citar

Chuquín Vasco, D. A., Rosario Rosero, B. D., Chuquín Vasco, N. S., & Chuquín Vasco, J. P. (2022). Predicción de la concentración de cloroformo en el proceso de destilación de una mezcla metanol-cloroformo mediante ARN. Dominio De Las Ciencias, 8(3), 408–428. https://doi.org/10.23857/dc.v8i3.2817

Número

Sección

Artí­culos Cientí­ficos