Predicción de la concentración de cloroformo en el proceso de destilación de una mezcla metanol-cloroformo mediante ARN
DOI:
https://doi.org/10.23857/dc.v8i3.2817Palabras clave:
ARN, DWSIM, cloroformo, destilaciónResumen
En este trabajo se realiza la simulación mediante el software de código abierto DWSIM de un sistema de destilación por oscilación de presión de la mezcla azeotrópica metanol-cloroformo para posteriormente predecir por redes neuronales artificiales (ARN) la concentración de cloroformo. El modelo de predicción desarrollado utiliza una capa oculta con 100 neuronas. La temperatura y la fracción molar de cloroformo en la alimentación, la relación de reflujo y temperatura de reboiler en la columna de baja y alta presión se han seleccionado como variables de entrada y la fracción molar de cloroformo y velocidad de flujo en el destilado y residuo de las columnas como variables de salida. El coeficiente de correlación de Pearson de 0.999, el error cuadrótico medio de 1.52 e-14 y el anólisis ANOVA (P-value > 0.05) confirman que no existe una diferencia estadísticamente significativa entre los datos experimentales y los valore predichos por la ARN, lo cual indica que la capacidad de predicción de la ARN es satisfactoria y que puede ser empleada para la predicción de la concentración cloroformo en el sistema.
Citas
Alblawi, A. (2020). Fault diagnosis of an industrial gas turbine based on the thermodynamic model coupled with a multi feedforward artificial neural networks. Energy Reports. https://doi.org/10.1016/j.egyr.2020.04.029
An, Y., Li, W., Li, Y., Huang, S., Ma, J., Shen, C., & Xu, C. (2015). Design/optimization of energy-saving extractive distillation process by combining preconcentration column and extractive distillation column. Chemical Engineering Science. https://doi.org/10.1016/j.ces.2015.05.003
Baiocco, G., Almonti, D., Guarino, S., Tagliaferri, F., Tagliaferri, V., & Ucciardello, N. (2020). Image-based system and artificial neural network to automate a quality control system for cherries pitting process. In Procedia CIRP. https://doi.org/10.1016/j.procir.2020.05.091
Chen, Yingyi, Song, L., Liu, Y., Yang, L., & Li, D. (2020). A review of the artificial neural network models for water quality prediction. Applied Sciences (Switzerland), 10(17). https://doi.org/10.3390/app10175776
Chen, Yixuan, Liu, C., & Geng, Z. (2018). Design and control of fully heat-integrated pressure swing distillation with a side withdrawal for separating the methanol/methyl acetate/acetaldehyde ternary mixture. Chemical Engineering and Processing: Process Intensification. https://doi.org/10.1016/j.cep.2017.11.013
Dantas, T. N. C., Cabral, T. J. O., Dantas Neto, A. A., & Moura, M. C. P. A. (2020). Enrichmnent of patchoulol extracted from patchouli (Pogostemon cablin) oil by molecular distillation using response surface and artificial neural network models. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2019.09.011
Fulgueras, A. M., Kim, D. S., & Cho, J. (2016). Modeling and optimization study of pressure-swing distillation for the separation process of acetone-methanol mixture with vapor-liquid equilibrium analysis. Journal of Chemical Engineering of Japan. https://doi.org/10.1252/jcej.14we424
Gupta, N., & Nigam, S. (2020). Crude Oil Price Prediction using Artificial Neural Network. In Procedia Computer Science. https://doi.org/10.1016/j.procs.2020.03.136
Hamad, A., & Dunn, R. F. (2002). Energy optimization of pressure-swing azeotropic distillation systems. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie020219h
Heo, S., & Lee, J. H. (2018). Fault detection and classification using artificial neural networks. IFAC-PapersOnLine. https://doi.org/10.1016/j.ifacol.2018.09.380
Horsley, L. H. (1947). Graphical method for predicting azeotropism and effect of pressure on azeotropic constants. Industrial and Engineering Chemistry. https://doi.org/10.1021/ba-1952-0006.ch004
Hosgor, E., Kucuk, T., Oksal, I. N., & Kaymak, D. B. (2014). Design and control of distillation processes for methanol-chloroform separation. Computers and Chemical Engineering, 67, 166–177. https://doi.org/10.1016/j.compchemeng.2014.03.026
Kim, W., Jeon, S. W., & Kim, Y. (2016). Model-based multi-objective optimal control of a VRF (variable refrigerant flow) combined system with DOAS (dedicated outdoor air system) using genetic algorithm under heating conditions. Energy. https://doi.org/10.1016/j.energy.2016.03.139
Knapp, J. P., & Doherty, M. F. (1992). A New Pressure-Swing-Distillation Process for Separating Homogeneous Azeotropic Mixtures. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie00001a047
Lee, J., Cho, J., Kim, D. M., & Park, S. (2011). Separation of tetrahydrofuran and water using pressure swing distillation: Modeling and optimization. Korean Journal of Chemical Engineering. https://doi.org/10.1007/s11814-010-0467-1
Li, R., Ye, Q., Suo, X., Dai, X., & Yu, H. (2016). Heat-Integrated Pressure-Swing Distillation Process for Separation of a Maximum-Boiling Azeotrope Ethylenediamine/Water. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2015.10.038
Li, W., Zhong, L., He, Y., Meng, J., Yao, F., Guo, Y., & Xu, C. (2015). Multiple Steady-States Analysis and Unstable Operating Point Stabilization in Homogeneous Azeotropic Distillation with Intermediate Entrainer. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.5b00572
Liang, S., Cao, Y., Liu, X., Li, X., Zhao, Y., Wang, Y., & Wang, Y. (2017). Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2016.10.040
Lladosa, E., Montón, J. B., & Burguet, M. C. (2011). Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressure-swing distillation: Computer simulation and economic optimization. Chemical Engineering and Processing: Process Intensification. https://doi.org/10.1016/j.cep.2011.07.010
Luyben, W. L. (2012). Pressure-swing distillation for minimum- and maximum-boiling homogeneous azeotropes. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie3002414
Luyben, W. L. (2013). Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Computers and Chemical Engineering. https://doi.org/10.1016/j.compchemeng.2012.10.014
Luyben, W. L. (2014). Control of a heat-integrated pressure-swing distillation process for the separation of a maximum-boiling azeotrope. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie502395h
Luyben, W. L. (2015). Improved design of an extractive distillation system with an intermediate-boiling solvent. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2015.10.020
Mahdi, T., Ahmad, A., Nasef, M. M., & Ripin, A. (2015). State-of-the-art technologies for separation of azeotropic mixtures. Separation and Purification Reviews. https://doi.org/10.1080/15422119.2014.963607
Medeiros, D. (2020). DWSIM - Open Source Process Simulator Web Site.
Mulia-Soto, J. F., & Flores-Tlacuahuac, A. (2011). Modeling, simulation and control of an internally heat integrated pressure-swing distillation process for bioethanol separation. Computers and Chemical Engineering. https://doi.org/10.1016/j.compchemeng.2011.03.011
Narasimha, P. L., Delashmit, W. H., Manry, M. T., Li, J., & Maldonado, F. (2008). An integrated growing-pruning method for feedforward network training. Neurocomputing. https://doi.org/10.1016/j.neucom.2007.08.026
Nolfi, S., & Parisi, D. (1997). Evolution of Artificial Neural Networks. Neural Networks.
Raíºl Rojas. (2013). Neural Networks: A Systematic Introduction. Berlin: Springer Science & Business Media. Retrieved from https://link.springer.com/book/10.1007/978-3-642-61068-4
Repke, J. U., Forner, F., & Klein, A. (2005). Separation of homogeneous azeotropic mixtures by pressure swing distillation - Analysis of the operation performance. Chemical Engineering and Technology. https://doi.org/10.1002/ceat.200500232
Roscoe, H. E. (1862). On the composition of the aqueous acids of constant boiling point. - Second communication. Journal of the Chemical Society. https://doi.org/10.1039/JS8621500270
Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation. https://doi.org/10.1162/106365602320169811
Sun, K., Huang, S. hsuan, Jang, S. S., & Wong, D. S. H. (2016). Development of soft sensor with neural network and nonlinear variable selection for crude distillation unit process. In Computer Aided Chemical Engineering. https://doi.org/10.1016/B978-0-444-63428-3.50061-8
Tabares, H., Branch, J., & Valencia, J. (2006). Dynamic topology generation of an artificial neural network of the multilayer perceptron type. Revista Facultad de Ingeniería Universidad de Antioquia.
Wang, W., Van Gelder, P. H. A. J. M., & Vrijling, J. K. (2005). Some issues about the generalization of neural networks for time series prediction. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/11550907_88
Wang, Y., Bu, G., Wang, Y., Zhao, T., Zhang, Z., & Zhu, Z. (2016). Application of a simulated annealing algorithm to design and optimize a pressure-swing distillation process. Computers and Chemical Engineering. https://doi.org/10.1016/j.compchemeng.2016.09.014
Wasylkiewicz, S. K., Kobylka, L. C., & Castillo, F. J. L. (2003). Pressure sensitivity analysis of azeotropes. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie020079b
Wei, H. M., Wang, F., Zhang, J. L., Liao, B., Zhao, N., Xiao, F. K., … Sun, Y. H. (2013). Design and control of dimethyl carbonate-methanol separation via pressure-swing distillation. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie3034976
Widagdo, S., & Seider, W. D. (1996). Journal review. Azeotropic distillation. AIChE Journal. https://doi.org/10.1002/aic.690420110
Yaqub, M., Asif, H., Kim, S., & Lee, W. (2020). Modeling of a full-scale sewage treatment plant to predict the nutrient removal efficiency using a long short-term memory (LSTM) neural network. Journal of Water Process Engineering. https://doi.org/10.1016/j.jwpe.2020.101388
You, X., Rodriguez-Donis, I., & Gerbaud, V. (2015). Improved design and efficiency of the extractive distillation process for acetone-methanol with water. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie503973a
Yu, H., Ye, Q., Xu, H., Zhang, H., & Dai, X. (2015). Design and control of dividing-wall column for tert-butanol dehydration system via heterogeneous azeotropic distillation. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie504325g
Zhang, G., Eddy, P., & Hu, M. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35–62. https://doi.org/10.1016/S0169-2070(97)00044-7
Zhang, Z., Zhang, Q., Li, G., Liu, M., & Gao, J. (2016). Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/j.cjche.2016.06.013
Publicado
Cómo citar
Número
Sección
Licencia
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.