Reliability assessment in SiC and GaN power MOSFETs based emerging Wide Bandgap semiconductors technology from a systematic literature review

Autores/as

  • Esteban Augusto Guevara-Cabezas Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba,
  • Cristian Javier Rocha-Jácome University of Seville, 41092 Seville, Spain
  • José Luis Tinajero-León Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba,
  • Mayra Alejandra Pacheco-Cunduri Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba,

DOI:

https://doi.org/10.23857/dc.v8i1.2627

Palabras clave:

SiC, GaN, WBG Semiconductors, BTI, Power electronic, 4H-SiC MOSFET, HEMT.

Resumen

Silicon power devices have improved over the last decades, but they are approaching their per-formance limits imposed by material properties. However, emerging materials such as SiC and GaN are excelling in such applications and have attracted great interest in academia and industry due to their superior properties, for the development of wide bandgap (WBG) devices, in particu-lar power MOSFETs, which will be key components for the next generation of high-voltage, low-loss power electronics. Devices with impressive new specifications are already available, but they must prove their reliability to be incorporated into systems. Many instability problems must be resolved, and their causes analyzed using electrical characterization tests such as PBTI and NBTI. Once devices are found to be unreliable, tests can be performed to understand the reasons based on the criteria and interpretations of the characterization methods. This paper brings togeth-er and discusses some problems that can happen in GaN and SiC, and the various instability studies that are key to being able to prevent failures while determining the acceptable range of operating conditions for a particular device. Finally, technological challenges, applications and research opportunities are discussed; knowing that future applications such as automotive, renew-able energy, and space will be more critical and with higher reliability requirements, so better and new reliability testing methods will be needed in their components.

Biografía del autor/a

Esteban Augusto Guevara-Cabezas, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba,

Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, Ecuador

Cristian Javier Rocha-Jácome, University of Seville, 41092 Seville, Spain

University of Seville, 41092 Seville, Spain 

José Luis Tinajero-León, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba,

Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, Ecuador

Mayra Alejandra Pacheco-Cunduri, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba,

Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, Ecuador

Citas

Ma, S., Guo, S., Zheng, D., Chang, S., Zhang, X.: Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China. Energy. 225, 120164 (2021).

Murthy-Bellur, D., Ayana, E., Kunin, S., Palmer, B., Varigonda, S.: WBG inverter for commercial power generation and vehicle electrification. IEEE Int. Work. Integr. Power Packag. IWIPP 2015. 36–39 (2015).

Baker, N., Iannuzzo, F.: Smart SiC MOSFET accelerated lifetime testing. Microelectron. Reliab. 88–90, 43–47 (2018).

Shur, M.: Wide band gap semiconductor technology: State-of-the-art. Solid. State. Electron. 155, 65–75 (2019).

Roccaforte, F., Fiorenza, P., Greco, G., Lo Nigro, R., Giannazzo, F., Iucolano, F., Saggio, M.: Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 187–188, 66–77 (2018).

Young, M.: applications substrate & epi developments. 15, 2002 (2002).

Deshpande, A., Luo, F.: Design of a silicon-WBG hybrid switch. WiPDA 2015 - 3rd IEEE Work. Wide Bandgap Power Devices Appl. 296–299 (2015).

Nguyen, D.D., Kouhestani, C., Kambour, K.E., Hjalmarson, H.P., Devine, R.A.B.: Extraction of recoverable and permanent trapped charge resulting from negative bias temperature instability. Phys. Status Solidi Curr. Top. Solid State Phys. 10, 259–262 (2013).

Du, H., Letz, S., Baker, N., Goetz, T., Iannuzzo, F., Schletz, A.: Effect of short-circuit degradation on the remaining useful lifetime of SiC MOSFETs and its failure analysis. Microelectron. Reliab. 114, (2020).

Busatto, G., Di Pasquale, A., Marciano, D., Palazzo, S., Sanseverino, A., Velardi, F.: Physical mechanisms for gate damage induced by heavy ions in SiC power MOSFET. Microelectron. Reliab. 114, 113903 (2020).

Peters, D., Aichinger, T., Basler, T., Rescher, G., Puschkarsky, K., Reisinger, H.: Investigation of threshold voltage stability of SiC MOSFETs. Proc. Int. Symp. Power Semicond. Devices ICs. 2018-May, 40–43 (2018).

Fu, W., Xu, Y., Yan, B., Zhang, B., Xu, R.: Numerical simulation of local doped barrier layer AlGaN/GaN HEMTs. Superlattices Microstruct. 60, 443–452 (2013).

Karboyan, S., Uren, M.J., Manikant, Pomeroy, J.W., Kuball, M.: On the origin of dynamic Ron in commercial GaN-on-Si HEMTs. Microelectron. Reliab. 81, 306–311 (2018).

Son, D.H., Jo, Y.W., Seo, J.H., Won, C.H., Im, K.S., Lee, Y.S., Jang, H.S., Kim, D.H., Kang, I.M., Lee, J.H.: Low voltage operation of GaN vertical nanowire MOSFET. Solid. State. Electron. 145, 1–7 (2018).

Zhou, Q., Wei, D., Peng, X., Zhu, R., Dong, C., Huang, P., Wei, P., Xiong, W., Ma, X., Dong, Z., Yang, X., Chen, W., Zhang, B.: A novel enhancement-mode GaN vertical MOSFET with double hetero-junction for threshold voltage modulation. Superlattices Microstruct. 123, 297–305 (2018).

Chakraborty, A., Ghosh, S., Mukhopadhyay, P., Das, S., Bag, A., Biswas, D.: Effect of trapped charge in AlGaN/GaN and AlGaN/InGaN/GaN heterostructure by temperature dependent threshold voltage analysis. Superlattices Microstruct. 113, 147–152 (2018).

Peters, D., Aichinger, T., Basler, T., Rescher, G., Puschkarsky, K., Reisinger, H.: Investigation of threshold voltage stability of SiC MOSFETs. Proc. Int. Symp. Power Semicond. Devices ICs. 2018-May, 40–43 (2018).

Puschkarsky, K., Reisinger, H., Aichinger, T., Gustin, W., Grasser, T.: Understanding BTI in SiC MOSFETs and its impact on circuit operation. IEEE Trans. Device Mater. Reliab. 18, 144–153 (2018).

Pí©rez-Tomás, A., Godignon, P., Mestres, N., Millán, J.: A field-effect electron mobility model for SiC MOSFETs including high density of traps at the interface. Microelectron. Eng. 83, 440–445 (2006).

Fei, C., Bai, S., Wang, Q., Huang, R., He, Z., Liu, H., Liu, Q.: Influences of pre-oxidation nitrogen implantation and post-oxidation annealing on channel mobility of 4H-SiC MOSFETs. J. Cryst. Growth. 531, 125338 (2020).

Yamasue, K., Cho, Y.: Spatial scale dependent impact of non-uniform interface defect distribution on field effect mobility in SiC MOSFETs. Microelectron. Reliab. 114, 113829 (2020).

Kutsuki, K., Watanabe, Y., Yamashita, Y., Soejima, N., Kataoka, K., Onishi, T., Yamamoto, K., Fujiwara, H.: Experimental investigation and modeling of inversion carrier effective mobility in 4H-SiC trench MOSFETs. Solid. State. Electron. 157, 12–19 (2019).

Ding, X., Lu, P., Shan, Z.: A high-accuracy switching loss model of SiC MOSFETs in a motor drive for electric vehicles ☆. Appl. Energy. 291, 116827 (2021).

Linewih, H., Dimitrijev, S., Cheong, K.Y.: Channel-carrier mobility parameters for 4H SiC MOSFETs. Microelectron. Reliab. 43, 405–411 (2003).

Moon, J.H., Kang, I.H., Kim, H.W., Seok, O., Bahng, W., Ha, M.W.: TEOS-based low-pressure chemical vapor deposition for gate oxides in 4H–SiC MOSFETs using nitric oxide post-deposition annealing. Curr. Appl. Phys. 20, 1386–1390 (2020).

Cabello, M., Soler, V., Rius, G., Montserrat, J., Rebollo, J., Godignon, P.: Advanced processing for mobility improvement in 4H-SiC MOSFETs: A review. Mater. Sci. Semicond. Process. 78, 22–31 (2018).

Wu, J., Hu, J., Zhao, J.H., Wang, X., Li, X., Fursin, L., Burke, T.: Normally-off 4H-SiC trench-gate MOSFETs with high mobility. Solid. State. Electron. 52, 909–913 (2008).

Mahapatra, S., Goel, N., Chaudhary, A., Joshi, K., Mukhopadhyay, S.: Characterization methods for BTI degradation and associated gate insulator defects. (2016).

Roccaforte, F., Giannazzo, F., Iucolano, F., Eriksson, J., Weng, M.H., Raineri, V.: Surface and interface issues in wide band gap semiconductor electronics. Appl. Surf. Sci. 256, 5727–5735 (2010).

Consentino, G., Guevara, E., Sanchez, L., Crupi, F., Reggiani, S., Meneghesso, G.: Threshold voltage instability in SiC power MOSFETs. PCIM Eur. Conf. Proc. 34–37 (2019).

Ghosh, A., Hao, J., Cook, M., Kendrick, C., Suliman, S.A., Hall, G.D.R., Kopley, T., Awadelkarim, O.O.: Studies of Bias Temperature Instabilities in 4H-SiC DMOSFETs. IEEE Int. Reliab. Phys. Symp. Proc. 2020-April, 2–5 (2020).

Kuraguchi, M., Kajiwara, Y., Kato, D., Hikosaka, T., Ono, H., Shindome, A., Mukai, A., Nunoue, S.: Improvement of channel mobility and reliability in GaN-MOSFETs. 2019 Compd. Semicond. Week, CSW 2019 - Proc. 1700511, 3–4 (2019).

Uesugi, K., Shindome, A., Kajiwara, Y., Yonehara, T., Kato, D., Hikosaka, T., Kuraguchi, M., Nunoue, S.: Improvement of Channel Mobility of GaN-MOSFETs With Thermal Treatment for Recess Surface. Phys. Status Solidi Appl. Mater. Sci. 215, 1–7 (2018).

Yonehara, T., Kajiwara, Y., Kato, D., Uesugi, K., Shimizu, T., Nishida, Y., Ono, H., Shindome, A., Mukai, A., Yoshioka, A., Kuraguchi, M.: Improvement of positive bias temperature instability characteristic in GaN MOSFETs by control of impurity density in SiO2 gate dielectric. Tech. Dig. - Int. Electron Devices Meet. IEDM. 33.3.1-33.3.4 (2018).

Golan, G., Azoulay, M., Shaheen, S., Bernstein, J.B.: A Novel Reliability Model for GaN Power FET. 2018 IEEE Int. Conf. Sci. Electr. Eng. Isr. ICSEE 2018. (2019).

Golan, G., Azoulay, M., Avraham, T., Kremenetsky, I., Bernstein, J.B.: An improved reliability model for Si and GaN power FET. Microelectron. Reliab. 81, 77–89 (2018).

Sleik, R., Glavanovics, M., Nikitin, Y., Di Bernardo, M., Muetze, A., Krischan, K.: Performance enhancement of a modular test system for power semiconductors for HTOL testing by use of an embedded system. In: 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe). p. P.1-P.8 (2017).

Sopt, M., Sopt, M.: Monografí­as del SOPT: Tecnologí­a de Semiconductores GaN y SiC. Sist. Obs. y Prospect. Tecnológica. (2011).

Tartarin, J.G., Lazar, O., Rumeau, A., Franc, B., Bary, L., Lambert, B.: Analysis of drain current transient stability of AlGaN/GaN HEMT stressed under HTOL & HTRB, by random telegraph noise and low frequency noise characterizations. Microelectron. Reliab. 114, 113895 (2020).

Ozaki, N., Ishida, K., Nishi, T., Ohsato, H., Watanabe, E., Ikeda, N., Sugimoto, Y.: OCT with a Visible Broadband Light Source Applied to High-Resolution Nondestructive Inspection for Semiconductor Optical Devices. In: Wang, M.R. (ed.) Optical Coherence Tomography and Its Non-medical Applications. IntechOpen, Rijeka (2020).

MTBF, MTBR, MTTR, MTTF, MTBDE and FIT, https://www.linkedin.com/pulse/mtbf-mtbr-mttr-mttf-mtbde-fit-ivan-luizio-magalhí£es, last accessed 2021/03/27.

Rescher, G., Pobegen, G., Grasser, T.: Threshold voltage instabilities of present SiC-power MOSFETs under positive bias temperature stress. Mater. Sci. Forum. 858, 481–484 (2016).

Guevara, E., Herrera-Pí©rez, V., Rocha, C., Guerrero, K.: Threshold voltage degradation for n-channel 4H-SiC power MOSFETs. J. Low Power Electron. Appl. 10, (2020).

Publicado

2022-02-24

Cómo citar

Guevara-Cabezas, E. A., Rocha-Jácome, C. J., Tinajero-León, J. L., & Pacheco-Cunduri, M. A. (2022). Reliability assessment in SiC and GaN power MOSFETs based emerging Wide Bandgap semiconductors technology from a systematic literature review. Dominio De Las Ciencias, 8(1), 1134–1153. https://doi.org/10.23857/dc.v8i1.2627

Número

Sección

Artí­culos Cientí­ficos