Anólisis del estado actual de la cosecha de energía por medio de vibraciones producidas por cargas de viento
DOI:
https://doi.org/10.23857/dc.v7i4.2436Palabras clave:
Cosecha de energÃa, transducción piezoeléctrica, CFD, vibraciones.Resumen
El presente trabajo tiene como objetivo analizar el estado actual de la cosecha de energía por medio de vibraciones producidas por cargas de viento. Para cumplir con el objetivo, inicialmente se analizan las principales fuentes para la generación de energía, posteriormente se realiza un estudio sobre la evolución de los sistemas de recolección de energía renovable y los métodos de transducción piezoeléctrica para la conversión de las vibraciones, finalmente se describen los métodos utilizados para investigar las cosechadoras de energía. El anólisis realizado evidencia que, a pesar de existir míºltiples fuentes de energía renovables, la recolección de energía a partir de vibraciones emitidas por las cargas de viento es una importante alternativa. Por otra parte, el empleo de materiales piezoeléctricos compuestos ha permitido que, las vibraciones se aprovechen con alto porcentaje de conversión en energía íºtil, siendo el método de transducción idóneo para transformar las vibraciones producidas por cargas de viento. De igual forma se pone de manifiesto que el método de la dinómica de fluido computacional ha sido el método mós empleado en este tipo de investigaciones, debido a la posibilidad de investigar los efectos de fluido acoplados con anólisis modales. Los modelos de cosechadoras de paneles rectos o con articulaciones como los modelos en forma de L, T, D, C, han sido los mós utilizados hasta el momento. Las dimensiones de los órganos de trabajo influyen en la densidad de potencia, el volumen de la cosechadora y la potencia por unidad de volumen a generar.Citas
Abdelkefi, A. (2016). Aeroelastic energy harvesting: A review. International Journal of Engineering Science, 100, 112-135. https://doi.org/https://doi.org/10.1016/j.ijengsci.2015.10.006
Abdelkefi, A., & Ghommem, M. (2013). Piezoelectric energy harvesting from morphing wing motions for micro air vehicles. Theoretical Applied Mechanics Letters, 3(5), 052004. https://doi.org/https://doi.org/10.1063/2.1305204
Akaydin, H., Elvin, N., & Andreopoulos, Y. (2012). The performance of a self-excited fluidic energy harvester. Smart Materials Structures, 21(2), 025007. https://doi.org/https://doi.org/10.1088/0964-1726/21/2/025007
Akbar, M., & Curiel-Sosa, J. (2019). An iterative finite element method for piezoelectric energy harvesting composite with implementation to lifting structures under Gust Load Conditions. Composite Structures, 219, 97-110. https://doi.org/https://doi.org/10.1016/j.compstruct.2019.03.070
Aquino, A. I., Calautit, J. K., & Hughes, B. R. (2017). Evaluation of the integration of the Wind-Induced Flutter Energy Harvester (WIFEH) into the built environment: Experimental and numerical analysis. Applied Energy, 207, 61-77. https://doi.org/https://doi.org/10.1016/j.apenergy.2017.06.041
Bibo, A., Abdelkefi, A., & Daqaq, M. F. (2015). Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations. Journal of vibration acoustics, 137(3). https://doi.org/https://doi.org/10.1115/1.4029611
Bonilla, J., Roca, L., de la Calle, A., & Dormido, S. (2017). Modelo Dinámico de un Recuperador de Gases-Sales Fundidas para una Planta Termosolar Híbrida de Energías Renovables. Revista Iberoamericana de Automática e Informática industrial, 14(1), 70-81. https://doi.org/https://doi.org/10.1016/j.riai.2016.11.003
Bryant, M., & Garcia, E. (2011). Modeling and testing of a novel aeroelastic flutter energy harvester. Journal of vibration acoustics, 133(1). https://doi.org/https://doi.org/10.1115/1.4002788
Cetin, A., Kadioglu, Y. K., & Paksoy, H. (2019). Underground thermal heat storage and ground source heat pump activities in Turkey. Solar Energy. https://doi.org/https://doi.org/10.1016/j.solener.2018.12.055
Chen, C., Sharafi, A., & Sun, J.-Q. (2020). A high density piezoelectric energy harvesting device from highway traffic–Design analysis and laboratory validation. Applied Energy, 269, 115073. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115073
Chen, Y., Nan, J., & Wu, J. (2018). Wake effect on a semi-active flapping foil based energy harvester by a rotating foil. Computers Fluids, 160, 51-63. https://doi.org/https://doi.org/10.1016/j.compfluid.2017.10.024
Chen, Y., Zhan, J., Wu, J., & Wu, J. (2017). A fully-activated flapping foil in wind gust: Energy harvesting performance investigation. Ocean Engineering, 138, 112-122. https://doi.org/https://doi.org/10.1016/j.oceaneng.2017.04.027
Damaschke, J. M. (1997). Design of a low-input-voltage converter for thermoelectric generator. IEEE Transactions on industry applications, 33(5), 1203-1207. https://doi.org/https://doi.org/10.1109/28.633797
De Sousa, C., & Manganiello, L. (2018). Piezoelectric sensors applications in the detection of Contaminants in food. Revista INGENIERIA UC, 25(3). https://www.redalyc.org/journal/707/70757670014/70757670014.pdf
Elliott, R. S. (1993). Electromagnetics: history, theory and applications. IEEE Computer Society Press.
Evans, M., Tang, L., Tao, K., & Aw, K. (2019). Design and optimisation of an underfloor energy harvesting system. Sensors Actuators A: Physical, 285, 613-622. https://doi.org/https://doi.org/10.1016/j.sna.2018.12.002
Fu, X., & Liao, W.-H. (2018). Nondimensional model and parametric studies of impact piezoelectric energy harvesting with dissipation. Journal of Sound Vibration, 429, 78-95. https://doi.org/https://doi.org/10.1016/j.jsv.2018.05.013
Gao, X., Shih, W.-H., & Shih, W. Y. (2012). Flow energy harvesting using piezoelectric cantilevers with cylindrical extension. IEEE Transactions on Industrial Electronics, 60(3), 1116-1118. https://doi.org/https://doi.org/10.1109/TIE.2012.2187413
García, E., Correcher, A., Quiles, E., & Morant, F. J. (2016). Recursos y sistemas energí©ticos renovables del entorno marino y sus requerimientos de control. Revista Iberoamericana de Automática e Informática industrial, 13(2), 141-161. https://doi.org/http://doi.org/10.1016/j.riai.2016.03.002
Ghasemian, M., Ashrafi, Z. N., & Sedaghat, A. (2017). A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion Management, 149, 87-100. https://doi.org/https://doi.org/10.1016/j.enconman.2017.07.016
Gómez Molina, á. (2018). Diseño de un Sistema de energy harvesting basado en piezoelí©ctricos. https://ebuah.uah.es/xmlui/handle/10017/33621
Guo, X., Zhang, Y., Fan, K., Lee, C., & Wang, F. (2020). A comprehensive study of non-linear air damping and pull-in†effects on the electrostatic energy harvesters. Energy Conversion Management, 203, 112264. https://doi.org/https://doi.org/10.1016/j.enconman.2019.112264
Hamlehdar, M., Kasaeian, A., & Safaei, M. R. (2019). Energy harvesting from fluid flow using piezoelectrics: A critical review. Renewable Energy, 143, 1826-1838. https://doi.org/https://doi.org/10.1016/j.renene.2019.05.078
Han, Y., Sun, Y., & Wu, J. (2020). An efficient solar/lignite hybrid power generation system based on solar-driven waste heat recovery and energy cascade utilization in lignite pre-drying. Energy Conversion Management, 205, 112406. https://doi.org/https://doi.org/10.1016/j.enconman.2019.112406
Hidayanti, F., Wati, E. K., & Akbar, H. (2020). Energy Harvesting System Design for Converting Noise into Electrical Energy. International Journal of Advanced Science Technology, 29(03), 4791-4802. https://n9.cl/qiy8y
Hobbs, W. B., & Hu, D. L. (2012). Tree-inspired piezoelectric energy harvesting. Journal of Fluids Structures, 28, 103-114. https://doi.org/https://doi.org/10.1016/j.jfluidstructs.2011.08.005
Jamadar, V., Pingle, P., & Kanase, S. (2016). Possibility of harvesting Vibration energy from power producing devices: A review. 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT),
Jiang, W., Yuan, D., Xu, S., Hu, H., Xiao, J., Sha, A., & Huang, Y. (2017). Energy harvesting from asphalt pavement using thermoelectric technology. Applied Energy, 205, 941-950. https://doi.org/https://doi.org/10.1016/j.apenergy.2017.08.091
Jimí©nez, N., & Camarena, F. (2019). Modelización de cerámicas y transductores piezoelí©ctricos vibrando en espesor mediante matrices de transferencia. Modelling in Science Education Learning, 12(1), 87-110. https://doi.org/https://doi.org/10.4995/msel.2019.10803
Ku, M.-L., Li, W., Chen, Y., & Liu, K. R. (2015). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys Tutorials, 18(2), 1384-1412. https://doi.org/https://doi.org/10.1109/COMST.2015.2497324
Kuang, Y., Chew, Z. J., & Zhu, M. (2020). Strongly coupled piezoelectric energy harvesters: Finite element modelling and experimental validation. Energy Conversion Management, 213, 112855. https://doi.org/https://doi.org/10.1016/j.enconman.2020.112855
Kwon, S.-D. (2010). A T-shaped piezoelectric cantilever for fluid energy harvesting. Applied Physics Letters, 97(16), 164102. https://doi.org/10.1063/1.3503609
Li, D., Wu, Y., Da Ronch, A., & Xiang, J. (2016). Energy harvesting by means of flow-induced vibrations on aerospace vehicles. Progress in Aerospace Sciences, 86, 28-62. https://doi.org/https://doi.org/10.1016/j.paerosci.2016.08.001
Li, H., Liu, D., Wang, J., Shang, X., & Hajj, M. R. (2020). Broadband bimorph piezoelectric energy harvesting by exploiting bending-torsion of L-shaped structure. Energy Conversion Management, 206, 112503. https://doi.org/https://doi.org/10.1016/j.enconman.2020.112503
Liu, J., Zuo, H., Xia, W., Luo, Y., Yao, D., Chen, Y., Wang, K., & Li, Q. (2020). Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode. Microelectronic Engineering, 111333. https://doi.org/https://doi.org/10.1016/j.mee.2020.111333
Liu, Y., Lin, R., Chen, S., & Duan, W. (2020). FEM Simulation of Ocarina-Shaped Piezoelectric Wind Energy Harvester. In ACMSM25 (pp. 1071-1076). Springer. https://doi.org/https://doi.org/10.1007/978-981-13-7603-0_101
Luque Forastero, A. (2019). Análisis de la respuesta de estructuras reticulares planas auxí©ticas fabricadas con material piezoelí©ctrico.
Ma, Z., Bao, H., & Roskilly, A. P. (2020). Electricity-assisted thermochemical sorption system for seasonal solar energy storage. Energy Conversion Management, 209, 112659. https://doi.org/https://doi.org/10.1016/j.enconman.2020.112659
Maamer, B., Boughamoura, A., El-Bab, A. M. F., Francis, L. A., & Tounsi, F. (2019). A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Conversion Management, 199, 111973. https://doi.org/https://doi.org/10.1016/j.enconman.2019.111973
Mah, O. (1998). Fundamentals of Photovoltaic Materials. National Solar Power Research Institute. Inc, 12, 21-98.
McCarthy, J., Watkins, S., Deivasigamani, A., & John, S. (2016). Fluttering energy harvesters in the wind: A review. Journal of Sound Vibration, 361, 355-377. https://doi.org/https://doi.org/10.1016/j.jsv.2015.09.043
Naranjo, C., Oyinlola, M. A., Wright, A. J., & Greenough, R. M. (2019). Experimental study of a domestic solar-assisted ground source heat pump with seasonal underground thermal energy storage through shallow boreholes. Applied Thermal Engineering, 162, 114218. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2019.114218
Rajarathinam, M., & Ali, S. (2018). Energy generation in a hybrid harvester under harmonic excitation. Energy Conversion Management, 155, 10-19. https://doi.org/https://doi.org/10.1016/j.enconman.2017.10.054
Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. Renewable Sustainable Energy Reviews, 74, 590-601. https://doi.org/https://doi.org/10.1016/j.rser.2017.02.081
Setiawan, I. (2019). Studi Eksperimental Penggunaan Loudspeaker Sebagai Pengkonversi Energi Bunyi Menjadi Listrik Dalam Alat Pemanen Energi Akustik (Acoustic Energy Harvester). Jurnal Teknologi, 11(1), 9-16. https://doi.org/https://doi.org/10.24853/jurtek.11.1.9-16
Shan, X., Tian, H., Chen, D., & Xie, T. (2019). A curved panel energy harvester for aeroelastic vibration. Applied Energy, 249, 58-66. https://doi.org/https://doi.org/10.1016/j.apenergy.2019.04.153
Siddiqui, O., & Dincer, I. (2020). A new solar energy system for ammonia production and utilization in fuel cells. Energy Conversion Management, 208, 112590. https://doi.org/https://doi.org/10.1016/j.enconman.2020.112590
Sirohi, J., & Mahadik, R. (2012). Harvesting wind energy using a galloping piezoelectric beam. Journal of vibration acoustics, 134(1). https://doi.org/https://doi.org/10.1115/1.4004674
Sola, A., Bougiatioti, P., Kuepferling, M., Meier, D., Reiss, G., Pasquale, M., Kuschel, T., & Basso, V. (2017). Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method. Scientific reports, 7, 46752. https://doi.org/https://doi.org/10.1038/srep46752
Soto, P., Dominguez, L., & Rivera, W. (2018). Preliminary assessment of a solar absorption air conditioning pilot plant. Case studies in thermal engineering, 12, 672-676. https://doi.org/https://doi.org/10.1016/j.csite.2018.09.001
Takhedmit, H., Saddi, Z., Karami, A., Basset, P., & Cirio, L. (2017). Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up. Comptes Rendus Physique, 18(2), 98-106. https://doi.org/https://doi.org/10.1016/j.crhy.2016.12.001
Uchino, K. (2017). Advanced piezoelectric materials: Science and technology. Woodhead Publishing.
Velasco, J., Barambones, O., Calvo, I., Sáez de Ocáriz, I., & Chouza, A. (2018). Diseño de un modelo de precisión para actuadores piezoelí©ctricos. Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018. https://doi.org/https://doi.org/10.17979/spudc.9788497497565.0483
Vera, Y. E. G., Pí©rez, L. F. S., Pardo, L. A. C., & Benavides, C. H. M. (2019). Análisis Comparativo del Rendimiento de los Módulos Fotovoltaicos Monocristalino y Policristalino bajo Condiciones Climáticas de Fusagasugá. Ingeniería, investigación y tecnología, 24(1), 49-63. https://www.redalyc.org/jatsRepo/4988/498864120004/498864120004.pdf
Wang, J., Zhou, S., Zhang, Z., & Yurchenko, D. (2019). High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion Management, 181, 645-652. https://doi.org/https://doi.org/10.1016/j.enconman.2018.12.034
Wei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable Sustainable Energy Reviews, 74, 1-18. https://doi.org/https://doi.org/10.1016/j.rser.2017.01.073
Weinstein, L. A., Cacan, M. R., So, P., & Wright, P. (2012). Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows. Smart Materials Structures, 21(4), 045003. https://doi.org/https://doi.org/10.1088/0964-1726/21/4/045003
Wen, Q., Schulze, R., Billep, D., Otto, T., & Gessner, T. (2014). Modeling and optimization of a vortex induced vibration fluid kinetic energy harvester. Procedia Engineering, 87, 779-782.
Xie, K., Nian, Y.-L., & Cheng, W.-L. (2018). Analysis and optimization of underground thermal energy storage using depleted oil wells. Energy Buildings, 163, 1006-1016. https://doi.org/https://doi.org/10.1016/j.energy.2018.08.189
Yang, Y., Zhao, L., & Tang, L. (2013). Comparative study of tip cross-sections for efficient galloping energy harvesting. Applied Physics Letters, 102(6), 064105. https://doi.org/https://doi.org/10.1063/1.4792737
Ye, T., Wang, X., Li, X., Yan, A. Q., Ramakrishna, S., & Xu, J. (2017). Ultra-high Seebeck coefficient and low thermal conductivity of a centimeter-sized perovskite single crystal acquired by a modified fast growth method. Journal of Materials Chemistry C, 5(5), 1255-1260. https://doi.org/https://doi.org/10.1039/C6TC04594D
Yildirim, T., Ghayesh, M. H., Li, W., & Alici, G. (2017). A review on performance enhancement techniques for ambient vibration energy harvesters. Renewable Sustainable Energy Reviews, 71, 435-449. https://doi.org/https://doi.org/10.1016/j.rser.2016.12.073
Zaldívar, O. G. (2016). Estudio de Materiales relaxoresâ€: Influencia de los defectos en la estructura perovskita y el carácter relaxorâ€. Anuales de la Academia de Ciencias de Cuba. http://revistaccuba.sld.cu/index.php/revacc/article/view/253
Zhang, H., Corr, L. R., & Ma, T. (2018). Issues in vibration energy harvesting. Journal of Sound Vibration, 421, 79-90. https://doi.org/https://doi.org/10.1016/j.jsv.2018.01.057
Zhao, D., Ji, C., Li, S., & Li, J. (2014). Thermodynamic measurement and analysis of dual-temperature thermoacoustic oscillations for energy harvesting application. Energy Buildings, 65, 517-526. https://doi.org/https://doi.org/10.1016/j.energy.2013.10.078
Zhao, F., Chen, X., Yi, Z., Qin, F., Tang, Y., Yao, W., Zhou, Z., & Yi, Y. (2020). Study on the solar energy absorption of hybrid solar cells with trapezoid-pyramidal structure based PEDOT: PSS/c-Ge. Solar Energy, 204, 635-643. https://doi.org/https://doi.org/10.1016/j.solener.2020.05.030
Zhao, X., Xiang, H., & Shi, Z. (2020). Piezoelectric energy harvesting from vehicles induced bending deformation in pavements considering the arrangement of harvesters. Applied Mathematical Modelling, 77, 327-340. https://doi.org/https://doi.org/10.1016/j.apm.2019.07.048
Zhou, C.-F., Zou, H.-X., Wei, K.-X., & Liu, J.-G. (2019). Enhanced performance of piezoelectric wind energy harvester by a curved plate. Smart Materials Structures, 28(12), 125022. https://doi.org/https://doi.org/10.1088/1361-665X/ab525a
Publicado
Cómo citar
Número
Sección
Licencia
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.