Evaluación de Efluentes Industriales de Harina y Aceite de pescado para la producción de Biogós y metano en pruebas batch
DOI:
https://doi.org/10.23857/dc.v7i6.2320Palabras clave:
Materia orgánica, biogás, metano, industria, harina, aceite, pescadoResumen
La industria de harina y aceite de pescado genera una gran cantidad de residuos con elevado contenido de materia orgónica el cual puede ser tratado mediante la digestión anaerobia (DA). En este estudio, se evaluó la producción de biogós/metano de dos residuos provenientes de la industria de harina y aceite de pescado, vía pruebas de Potencial Bioquímico de Metano. Los resultados muestran que los residuos provenientes de Chimbote (EPI1) y Chancay (EPI2) presentan una producción de biogós de 1.009 m3/kg SV-adicionado y 0.738 m3/kg SV-adicionado respectivamente. Ademós, la producción de metano en EPI1 es de 0.62 m3-CH4/kg SV-adicionado y en EPI2 de 0.47 m3-CH4/kg SV-adicionado. El proceso de DA en ambos residuos se realizó de manera estable, ya que los valores de pH y AGV/AT se mantuvieron dentro de los valores recomendados. Por ello, la presente investigación demuestra que los residuos de la industria de harina y aceite de pescado pueden ser usados eficientemente para la producción de biogós con un elevado contenido de metano.Citas
Abdul Aziz, N. I. H., Hanafiah, M. M., & Mohamed Ali, M. Y. (2019). Sustainable biogas production from agrowaste and effluents – A promising step for small-scale industry income. Renewable Energy, 132, 363–369. https://doi.org/10.1016/j.renene.2018.07.149
American Public Health Association (APHA), American Water Works Association (AWWA), & Water Environment Federation (WEF). (2017). Standart Methods for the Examination of Water and Wastewater, 23rd Ed.
Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., & Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. https://doi.org/10.2166/wst.2009.040
Bí¼cker, F., Marder, M., Peiter, M. R., Lehn, D. N., Esquerdo, V. M., Antonio de Almeida Pinto, L., & Konrad, O. (2020). Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renewable Energy, 147, 798–805. https://doi.org/10.1016/j.renene.2019.08.140
Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16(3), 1462–1476. https://doi.org/10.1016/j.rser.2011.11.035
Donoso-Bravo, A., Pí©rez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160(2), 607–614. https://doi.org/10.1016/j.cej.2010.03.082
El Achkar, J. H., Lendormi, T., Hobaika, Z., Salameh, D., Louka, N., Maroun, R. G., & Lanoisellí©, J. L. (2017). Anaerobic digestion of nine varieties of grape pomace: Correlation between biochemical composition and methane production. Biomass and Bioenergy, 107(December 2016), 335–344. https://doi.org/10.1016/j.biombioe.2017.10.030
Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffií¨re, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J. C., De Laclos, H. F., Ghasimi, D. S. M., Hack, G., Hartel, M., … Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522. https://doi.org/10.2166/wst.2016.336
Ivanovs, K., Spalvins, K., & Blumberga, D. (2018). Approach for modelling anaerobic digestion processes of fish waste. Energy Procedia, 390 - 396. doi:https://doi.org/10.1016/j.egypro.2018.07.108.
Jensen, P. D., Ge, H., & Batstone, D. J. (2011). Assessing the role of biochemical methane potential tests in determining anaerobic degradability rate and extent. Water Science and Technology, 64(4), 880–886. https://doi.org/10.2166/wst.2011.662
Justesen, C. G., Astals, S., Mortensen, J. R., Thorsen, R., Koch, K., Weinrich, S., Triolo, J. M., & Hafner, S. D. (2019). Development and validation of a low-cost gas density method for measuring biochemical methane potential (BMP). Water (Switzerland), 11(12), 0–17. https://doi.org/10.3390/W11122431
Kafle, G. K., Kim, S. H., & Sung, K. I. (2013). Ensiling of fish industry waste for biogas production: A lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresource Technology, 127, 326–336. https://doi.org/10.1016/j.biortech.2012.09.032
Li, W., Khalid, H., Zhu, Z., Zhang, R., Liu, G., Chen, C., & Thorin, E. (2018). Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Applied Energy, 226(July), 1219–1228. https://doi.org/10.1016/j.apenergy.2018.05.055
Mao, C., Wang, X., Xi, J., Feng, Y., & Ren, G. (2017). Linkage of kinetic parameters with process parameters and operational conditions during anaerobic digestion. Energy, 135, 352–360. https://doi.org/10.1016/j.energy.2017.06.050
Mendieta, O., Madrigal, G., Castro, L., Rodríguez, J., & Escalante, H. (2020). Sugarcane scum as a novel substrate for rapid biogas production from the non-centrifugal cane sugar agribusiness sector in developing countries. Bioresource Technology, 297(October 2019), 122364. https://doi.org/10.1016/j.biortech.2019.122364
Muzondiwa Jingura, R., & Kamusoko, R. (2017). Methods for determination of biomethane potential of feedstocks: a review. Biofuel Research Journal, 573-586. doi: 10.18331/BRJ2017.4.2.3
Nazurally, N. (2018). Anaerobic digestion of fish waste and seagrass/macroalgae: potential sustainable waste management for tropical Small Island Developing States. Journal of Material Cycles and Waste Management, 20(3), 1724–1735. https://doi.org/10.1007/s10163-018-0738-1
Raposo, F., Banks, C. J., Siegert, I., Heaven, S., & Borja, R. (2006). Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochemistry, 41(6), 1444–1450. https://doi.org/10.1016/j.procbio.2006.01.012
Velásquez Piñas, J. A., Venturini, O. J., Silva Lora, E. E., & Calle Roalcaba, O. D. (2018). Technical assessment of mono-digestion and co-digestion systems for the production of biogas from anaerobic digestion in Brazil. Renewable Energy, 117, 447–458. https://doi.org/10.1016/j.renene.2017.10.085
Vivekanand, V., Mulat, D. G., Eijsink, V. G. H., & Horn, S. J. (2018). Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresource Technology, 249 (September 2017), 35–41. https://doi.org/10.1016/j.biortech.2017.09.169
Wu, Y., & Song, K. (2020). Process performance of anaerobic co-digestion of waste activated sludge and aquaculture sludge. Aquacultural Engineering, 90(December 2019), 102090. https://doi.org/10.1016/j.aquaeng.2020.102090
Wu, Y., & Song, K. (2021). Anaerobic co-digestion of waste activated sludge and fish waste: Methane production performance and mechanism analysis. Journal of Cleaner Production, 279, 123678. https://doi.org/10.1016/j.jclepro.2020.123678
Publicado
Cómo citar
Número
Sección
Licencia
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.