Degradación de pesticidas organoclorados mediante la aplicación de nanopartí­culas de TiO2 y sus posibles aplicaciones

Autores/as

DOI:

https://doi.org/10.23857/dc.v6i2.1195

Palabras clave:

Nanopartículas, contaminantes orgánicos persistentes, dióxido de titanio, fotocatálisis heterogénea.

Resumen

La presente revisión bibliogrófica tuvo como objetivo investigar la degradación de pesticidas organoclorados mediante la aplicación de nanopartí­culas de TiO2, a través del cual se identificó a los pesticidas organoclorados como los principales contaminantes persistentes en los cuerpos de agua, en el Ecuador el uso de insumos quí­micos corresponde al 50.7% en cultivos permanentes y 81.4% en cultivos y transitorios, los residuos generados por éstos insumos al ser considerados COPs se mantendrón en el ambiente por largos periodos de tiempo. Los procesos de oxidación avanzada se muestran como técnicas viables para la degradación de contaminantes orgónicos e inorgónicos, particularmente se puede considerar a la fotocatólisis heterogénea con el uso de nanopartí­culas de dióxido de titanio como una alternativa viable para el tratamiento de aguas crudas y aguas residuales, debido a su capacidad para mineralizar a los contaminantes orgónicos, reducir metales pesados y destruir microorganismos.

Biografía del autor/a

William Xavier Ibáñez-Moreno, Escuela Superior Politécnica de Chimborazo, Sede Morona Santiago, Macas.

Máster Universitario en Química Industrial e Introducción a la Investigación Química, Ingeniero Químico, Docente de la Escuela Superior Politécnica de Chimborazo, Sede Morona Santiago, Macas, Ecuador.

Jessica Paola Arcos-Logroño, Escuela Superior Politécnica de Chimborazo, Sede Morona Santiago, Macas.

Máster Universitario en Ciencias Agro-ambientales y Agro-alimentarias, Ingeniera en Biotecnología Ambiental, Docente de la Escuela Superior Politécnica de Chimborazo, Sede Morona Santiago, Macas, Ecuador.

Patricio Vladimir Méndez-Zambrano, Escuela Superior Politécnica de Chimborazo, Sede Morona Santiago, Macas.

Magíster en Gestión Ambiental, Ingeniero en Biotecnología Ambiental, Docente de la Escuela Superior Politécnica de Chimborazo, Sede Morona Santiago, Macas, Ecuador.

 

Citas

AGROCALIDAD. Resolución No. 0178. , (2011).

Anpo, M. (2000). Utilization of TiO 2 photocatalysts in green chemistry *. International Union of Pure and Applied Chemistry, 72(7), 1265–1270.

Arslan-Alaton, I. (2007). Degradation of a commercial textile biocide with advanced oxidation processes and ozone. Journal Of Environmental Management, 82, 145–154. https://doi.org/10.1016/j.jenvman.2005.12.021

Badawy, M. I., Ghaly, M. Y., & Gad-allah, T. A. (2006). Advanced oxidation processes for the removal of organo- phosphorus pesticides from wastewater. Desalination, 194, 166–175. https://doi.org/10.1016/j.desal.2005.09.027

Begum, A., & Agnihotri, P. (2014). Degradation of endosulfan and lindane using Fenton ’ s reagent. Applied Water Science. https://doi.org/10.1007/s13201-014-0237-z

Buccini, J. (2003). The Development of a Global Treaty on Persistent Organic Pollutants ( POPs ). The Handbook of Environmental Chemistry, 3.

Chen, D., Sivakumar, M., & Ray, A. K. (2000). Heterogeneous Photocatalysis in Environmental Remediation. Developments in Chemical Engineering and Mineral Processing, 8, 505–550.

Comninellis, C., Kapalka, A., Malato, S., Parsons, S. A., Poulios, I., & Mantzavinos, D. (2008). Advanced oxidation processes for water treatment : advances and trends for R & D. 776(November 2007), 769–776. https://doi.org/10.1002/jctb

Corsolini, S., Ademollo, N., Romeo, T., Greco, S., & Focardi, S. (2005). Persistent organic pollutants in edible fish : a human and environmental health problem. SCIENCE DIRECT, 79, 115–123. https://doi.org/10.1016/j.microc.2004.10.006

Djebbar, K. E., Zertal, A., Debbache, N., & Sehili, T. (2008). Comparison of Diuron degradation by direct UV photolysis and advanced oxidation processes. 88, 1505–1512. https://doi.org/10.1016/j.jenvman.2007.07.034

Egerton, T. A., & Tooley, I. R. (2014). Physical characterization of titanium dioxide nanoparticles. International Journal of Cosmetic Science, 1–12. https://doi.org/10.1111/ics.12113

El-shahawi, M. S., Hamza, A., Bashammakh, A. S., & Al-saggaf, W. T. (2010). An overview on the accumulation , distribution , transformations , toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta, 80(5), 1587–1597. https://doi.org/10.1016/j.talanta.2009.09.055

Eljarrat, E., & Barcelo, D. (2003). Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples. Trends in Analytical Chemistry, 22(10), 655–665. https://doi.org/10.1016/S0165-9936(03)01001-X

Esfandyari, A., Junin, R., Nawi, M., & Abdul, A. (2015). TiO2 nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. CHEMOSPHERE, 134, 7–15. https://doi.org/10.1016/j.chemosphere.2015.03.052

Fiedler, H. (2000). Persistent organic pollutants – chemical identity and properties. Europian Journal of Lipid Science and Technology, 45–60.

Fujishima, A., Zhang, X., & Tryk, D. A. (2007). Heterogeneous photocatalysis : From water photolysis to applications in environmental cleanup. International Journal of Hydrogen Energy, 32, 2664–2672. https://doi.org/10.1016/j.ijhydene.2006.09.009

Gálvez, J. B., Rodrí­guez, S. M., Gasca, C. A. E., Bandala, E. R., Gelover, S., & Leal, T. (1985). PURIFICACIóN DE AGUAS POR FOTOCATáLISIS HETEROGÉNEA: ESTADO DEL ARTE.

Gómez, J. C. (2006). Utilización de nanopartí­culas en tribologí­a , generación de energí­a y catálisis. Tí©cnica Industrial, 262.

Henao, S. (2001). Tratado fundamental para el control y eliminación. Manejo Integral de Plagas, (62), 92–95.

Herrmann, J. (1999). Heterogeneous photocatalysis : fundamentals and applications to the removal of various types of aqueous pollutants. 53, 115–129.

Herrmann, J. (2005). Heterogeneous photocatalysis : state of the art and present applications. 34(May). https://doi.org/10.1007/s11244-005-3788-2

Herrmann, J., Guillard, C., & Pichat, P. (1993). Heterogeneous photocatalysis an emerging technology for water treatment. Catalysis Today, 17, 7–20.

Hodge, E., & Diamond, M. (2009). Sources , Fate and Effects of Contaminant Emissions in Urban Areas. In S. Harrad (Ed.), Persistent Organic Pollutants (1st ed., pp. 171–207). Toronto: Blackwell Publishing Ltd.

Horikoshi, S., Kajitani, M., Sato, S., & Serpone, N. (2007). A novel environmental risk-free microwave discharge electrodeless lamp ( MDEL ) in advanced oxidation processes Degradation of the 2 , 4-D herbicide. Journal of Photochemistry & Photobiology, A: Chemistry, 189, 355–363. https://doi.org/10.1016/j.jphotochem.2007.02.027

Ibhadon, A. O., & Fitzpatrick, P. (2013). Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts, 189–218. https://doi.org/10.3390/catal3010189

INEC. (2014). Uso y Manejo de Agroquí­micos en la Agricultura 2014.

INEC. (2016). Información Ambiental en la Agricultura 2016.

INEC. (2020). Información Agroambiental y Tecnificación Agropecuaria, Módulo ESPAC 2018.

Iwata, H., Tanabe, S., Sakal, N., & Tatsukawa, R. (2000). Distribution of Persistent Organochlorines in the Oceanic Air and Surface Seawater and the Role of Ocean on Their Global Transport and Fate. Environmental Science & Technology, 27(6), 1080–1098.

Khodadadi, M. R., Zolfani, S. H., Yazdani, M., & Zavadskas, E. K. (2017). A hybrid MADM analysis in evaluating process of chemical wastewater purification regarding to advance oxidation processes. 6897(October). https://doi.org/10.3846/16486897.2017.1281140

Kiarii, E. M., Govender, K. K., & Ndungu, P. G. (2018). Recent advances in titanium dioxide / graphene photocatalyst. Bulletin of Materials Science, 41(3).

Kim, K. Do, & Kim, H. T. (2002). Synthesis of titanium dioxide nanoparticles using a continuous reaction method. Colloids and Surfaces, 207, 263–269.

Kusvuran, E., & Erbatur, O. (2004). Degradation of aldrin in adsorbed system using advanced oxidation processes : comparison of the treatment methods. Journal of Hazardous Materials, 115–125. https://doi.org/10.1016/j.jhazmat.2003.10.004

Length, F. (2007). Concentrations of residues from organochlorine pesticide in water and fish from some rivers in Edo State Nigeria. 2(9), 237–241.

Leo, A., Hansch, C., Elkins, D., Law, A. H., & Behavior, B. N. (1971). Partition coefficients and their uses. Chemical Reviews, 71(6).

Liu, Z., Hong, L., & Guo, B. (2005). Physicochemical and electrochemical characterization of anatase titanium dioxide nanoparticles. Journal of Power Sources, 143, 231–235. https://doi.org/10.1016/j.jpowsour.2004.11.056

Ljubas, D., Smoljanić, G., & Juretić, H. (2015). Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation. Journal of Environmental Management, 161, 83–91. https://doi.org/10.1016/j.jenvman.2015.06.042

Lokeren, L. Van, Maheut, G., Ribot, F., Escax, V., Verbruggen, I., Sanchez, C., … Willem, R. (2007). Characterization of Titanium Dioxide Nanoparticles Dispersed in Organic Ligand Solutions by Using a Diffusion-Ordered Spectroscopy-Based Strategy. 6957–6966. https://doi.org/10.1002/chem.200601722

Lucas, N. T., Hook, J. M., Mcdonagh, A. M., & Colbran, S. B. (2005). Titanium Dioxide Nanoparticles Functionalized with Pd and W Complexes of a Catecholphosphane Ligand. https://doi.org/10.1002/ejic.200400584

Mahlambi, M. M., Ngila, C. J., & Mamba, B. B. (2015). Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants : The Case of Titanium Dioxide Nanoparticles — A Review. Journal of Nanomaterials, 2015.

Mahmoodi, N., Arami, M., Limaee, N., Gharanjig, K., & Nourmohammadian, F. (2007). Nanophotocatalysis using immobilized titanium dioxide nanoparticle Degradation and mineralization of water containing organic pollutant : Case study of Butachlor. Materials Research Bulletin, 42, 797–806. https://doi.org/10.1016/j.materresbull.2006.08.031

Mantzavinos, D. (2008). In Focus : advanced oxidation processes. Journal of Chemical Technology and Biotechnology, 1322, 1321–1322. https://doi.org/10.1002/jctb

Martí­nez, C., Canle, M. L., Fernández, M. I., Santaballa, J. A., & Faria, J. (2011). Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Applied Catalysis B: Environmental, 107, 110–118. https://doi.org/10.1016/j.apcatb.2011.07.003

Moustakas, N. G., Kontos, A. G., Likodimos, V., Katsaros, F., Boukos, N., Tsoutsou, D., … Falaras, P. (2013). Inorganic-organic core-shell titania nanoparticles for efficient visible light activated photocatalysis. Applied Catalysis B: Environmental, 130–131, 14–24. https://doi.org/10.1016/j.apcatb.2012.10.007

Naicker, P. K., Cummings, P. T., Zhang, H., & Banfield, J. F. (2005). Characterization of Titanium Dioxide Nanoparticles Using Molecular Dynamics Simulations. Journal of Physical Chemistry, 15243–15249.

Nickheslat, A., Amin, M. M., Izanloo, H., Fatehizadeh, A., & Mousavi, S. M. (2013). Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide. Journal of Environmental and Public Health, 2013.

Oller, I., Fernández-ibáñez, P., Manuel, I., Pí©rez-estrada, L., Gernjak, W., Pulgarí­n, C., … Malato, S. (2007). Solar heterogeneous and homogeneous photocatalysis as a pre-treatment option for biotreatment. Research on Chemical Intermediates, 33(3), 407–420.

Oturan, M. A., Oturan, N., Edelahi, M. C., Podvorica, F. I., & El, K. (2011). Oxidative degradation of herbicide diuron in aqueous medium by Fenton ’ s reaction based advanced oxidation processes. Chemical Engineering Journal, 171(1), 127–135. https://doi.org/10.1016/j.cej.2011.03.072

Poulios, I. (2007). Special issue on Environmental applications of advanced oxidation processes .†Journal of Hazardous Materials, 146(April), 997785. https://doi.org/10.1016/j.jhazmat.2007.04.073

Rico-oller, B., Boudjemaa, A., Bahruji, H., Kebir, M., Prashar, S., Bachari, K., … Gómez-ruiz, S. (2015). Photodegradation of organic pollutants in water and green hydrogen production via methanol photoreforming of doped titanium oxide nanoparticles. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2015.10.101

Robert, D., Piscopo, A., & Weber, J.-V. (2004). First approach of the selective treatment of water by heterogeneous photocatalysis. Environmental Chemistry Letters, 5–8. https://doi.org/10.1007/s10311-004-0063-x

Rosales, C., Barrera, C., & Bryan, B. (2019). Dissemination of Endosulfan into the Environment. In Persistent Organic Pollutants (pp. 4–16). IntechOpen.

Safe, S. H. (2000). Toxicology of persistent organic. Europian Journal of Lipid Science and Technology, 52–53.

Saritha, P., Aparna, C., Himabindu, V., & Anjaneyulu, Y. (2007). Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol. 149, 609–614. https://doi.org/10.1016/j.jhazmat.2007.06.111

Scheringer, M. (2002). Persistence and spatial range of environmental chemicals (1st ed.). Wiley-VCH.

Serpone, N., Horikoshi, S., & Emeline, A. V. (2010). Microwaves in advanced oxidation processes for environmental applications . A brief review. Journal of Photochemistry & Photobiology, C: Photochemistry Reviews, 11(2–3), 114–131. https://doi.org/10.1016/j.jphotochemrev.2010.07.003

Sharma, V. K., Triantis, T. M., Antoniou, M. G., He, X., Pelaez, M., Han, C., … Dionysiou, D. D. (2012). Destruction of microcystins by conventional and advanced oxidation processes : A review q. Separation and Purification Technology, 91, 3–17. https://doi.org/10.1016/j.seppur.2012.02.018

Shen, S., Wu, ta Y., Ching, J., & Yang, C. (2011). Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes ( AOPs ) for treatment of dye wastewater. (April), 1130–1158. https://doi.org/10.1002/jctb.2636

Stephen, K. (2019). Introductory Chapter: Persistent Organic Pollutants (POPs). In Persistent Organic Pollutants. IntechOpen.

Teoh, W. Y., & Scott, J. A. (2012). Progress in Heterogeneous Photocatalysis : From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. The Journal of Physical Chemistry Letters. https://doi.org/10.1021/jz3000646

Vidal, A., & Sanchez, B. (1994). Heterogeneous photocatalysis : aqueous suspensions degradation of ethylbenzene in TiO2. Journal of Photochemistry & Photobiology, A: Chemistry, 79, 213–219.

Walker, C. H. (2009). ORGANIC POLLUTANTS. An Ecotoxicological Perspective (2da ed.; C. Press, Ed.). New York.

Wang, K., Guo, J., Yang, M., Junji, H., & Deng, R. (2009). Decomposition of two haloacetic acids in water using UV radiation , ozone and advanced oxidation processes. Journal of Hazardous Materials, 162, 1243–1248. https://doi.org/10.1016/j.jhazmat.2008.06.012

Weinberg, P. J. (2009). Guí­a para las ONG sobre los Contaminantes Orgánicos Persistentes. Mí©xico.

Xu, W., Wang, X., & Cai, Z. (2013). Analytical chemistry of the persistent organic pollutants identified in the Stockholm Convention: A review. Analytica Chimica Acta, 1–13. https://doi.org/10.1016/j.aca.2013.04.026

Zacharia, J. T. (2019). Degradation Pathways of Persistent Organic Pollutants (POPs) in the Environment. In Persistent Organic Pollutants. IntechOpen.

Zhu, X., Pathakoti, K., & Hwang, H. (2019). Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In Green Synthesis, Characterization and Applications of Nanoparticles. https://doi.org/10.1016/B978-0-08-102579-6.00010-1

Publicado

2020-04-30

Cómo citar

Ibáñez-Moreno, W. X., Arcos-Logroño, J. P., & Méndez-Zambrano, P. V. (2020). Degradación de pesticidas organoclorados mediante la aplicación de nanopartí­culas de TiO2 y sus posibles aplicaciones. Dominio De Las Ciencias, 6(2), 803–834. https://doi.org/10.23857/dc.v6i2.1195

Número

Sección

Artí­culos Cientí­ficos

Artículos más leídos del mismo autor/a