

DOI: https://doi.org/10.23857/dc.v10i2.3797

Ciencias Técnicas y Aplicadas Artículo de Investigación

Análisis interacción suelo-estructura en una zona de riesgo con cimentación de zapatas aisladas. Manabí, Ecuador

Soil-structure interaction analysis in a risk area with isolated footing foundations. Manabi, Ecuador

Análise da interação solo-estrutura em área de risco com fundações isoladas. Manabi, Equador

Fabian Alberto Macas Jaramillo ^I fmacas8625@utm.edu.ec https://orcid.org/0009-0007-3327-4250

Kevin Ricardo Proaño Viscarra ^{II} Kproano@ups.edu.ec https://orcid.org/0000-0002-7365-4107

Correspondencia: fmacas8625@utm.edu.ec

*Recibido: 27 de febrero de 2024 *Aceptado: 24 de marzo de 2024 * Publicado: 11 de abril de 2024

- I. Ingeniero Civil, Posgradista, Maestría en Ingeniería Civil con Mención en Estructuras Sismorresistentes. Universidad Técnica de Manabí, Portoviejo, Ecuador.
- II. Magíster en Ingeniería Civil con Mención en Estructuras Sismorresistentes, Docente de la Carrera de Ingeniería Civil, Universidad Politécnica Salesiana, Guayaquil, Ecuador.

Resumen

Este artículo presenta un análisis dinámico de interacción entre suelo y estructura, empleando modelos experimentales y la metodología ASCE 41-17. Nos permitirá comprender el comportamiento dinámico de edificios de hormigón armado con zapatas aisladas, evaluando la respuesta dinámica de edificaciones de 3, 4 y 5 pisos sobre estratos de arcilla blanda y arena densa. Con el uso de la norma Nec-15 y modelos computacionales, se realiza el análisis dinámico espectral, mostrando fuerzas cortantes en la base, periodos de vibración, desplazamientos de techo y derivas de piso para cada caso de estudio. Con los resultados se aprecia las variaciones en las características dinámicas de las estructuras según la incidencia de eventos sísmicos.

Palabras Claves: Interacción Suelo; Estructura; Comportamiento Dinámico; Edificios; Eventos símicos.

Abstract

This article presents a dynamic analysis of the interaction between soil and structure, using experimental models and the ASCE 41-17 methodology. It will allow us to understand the dynamic behavior of reinforced concrete buildings with isolated footings, evaluating the dynamic response of 3, 4 and 5-story buildings on strata of soft clay and dense sand. With the use of the Nec-15 standard and computational models, the spectral dynamic analysis is carried out, showing shear forces at the base, vibration periods, roof displacements and floor drifts for each case study. The results show the variations in the dynamic characteristics of the structures according to the incidence of seismic events. **Keywords:** Soil Interaction; Structure; Dynamic Behavior; Buildings; seismic events.

Resumo

Este artigo apresenta uma análise dinâmica da interação entre solo e estrutura, utilizando modelos experimentais e a metodologia ASCE 41-17. Permitirá compreender o comportamento dinâmico de edifícios de betão armado com sapatas isoladas, avaliando a resposta dinâmica de edifícios de 3, 4 e 5 pisos sobre estratos de argila mole e areia densa. Com a utilização do padrão Nec-15 e modelos computacionais, é realizada a análise dinâmica espectral, mostrando forças de cisalhamento na base,

períodos de vibração, deslocamentos de cobertura e desvios de piso para cada estudo de caso. Os resultados mostram as variações nas características dinâmicas das estruturas de acordo com a incidência de eventos sísmicos.

Palavras-chave: Interação Solo; Estrutura; Comportamento Dinâmico; Edifícios; eventos sísmicos.

Introducción

La nación ecuatoriana enfrenta una intensa actividad sísmica y volcánica, derivada de la convergencia entre las placas de Nazca y Sudamericana, las cuales generan terremotos y eventos naturales de gran impacto. Según la investigación de (Butchibabu et al., 2023), esta región libera energía acumulada a través de ciclos de grandes terremotos agrupados, prolongando así los períodos de riesgo sísmico. A pesar de que Ecuador se considera en alto riesgo sísmico, la zona Nor-Oriental registra una amenaza intermedia.(González Acosta et al., 2021)

Un estudio realizado por Aguiar & Ortiz (2017) revela que la ciudad de Manabí presenta diversas distribuciones de suelo, incluyendo suelos blandos, estratos rocosos, transiciones y áreas susceptibles a deslizamientos. Esta variabilidad del suelo puede influir significativamente en el comportamiento estructural durante eventos sísmicos importantes. Por esta razón, el artículo de Ruiz García & Guerrero (2017) destaca la importancia de considerar los efectos de la interacción suelo-estructura (ISE), especialmente cuando las estructuras se asientan sobre suelos blandos.

Según (Kleemann et al., 2022),la evaluación de la interacción suelo-estructura en cimentaciones superficiales constituye un componente crítico en los campos de la ingeniería geotécnica y estructural. Este concepto alude a cómo las propiedades del suelo afectan el comportamiento de las cimentaciones y, por consiguiente, el desempeño de las estructuras construidas sobre estas (Forcellini, 2021).

La interacción suelo-estructura representa un pilar fundamental en los dominios de la ingeniería civil y la arquitectura, ya que aborda la dinámica entre el suelo y las estructuras. Esta interacción resulta indispensable para asegurar la estabilidad y seguridad de las construcciones civiles en su conjunto. Entender cómo el suelo y la estructura se influyen mutuamente es esencial para concebir y erigir infraestructuras robustas y seguras.(Zhang et al., 2019)

El suelo, al ser la base sobre la cual reposan las estructuras, desempeña un papel esencial en cualquier proyecto de construcción. No obstante, es importante tener en cuenta que el suelo no es uniforme; su composición, densidad y capacidad de carga varían según la ubicación geográfica. Por ende, la interacción entre el suelo y la estructura puede ser sumamente compleja y requiere un análisis meticuloso.(Vicencio & Alexander, 2021)

En contraposición al enfoque tradicional, donde se considera que la fundación y el suelo son infinitamente rígidos, Villareal (2020) argumenta que es crucial tener en cuenta los parámetros de amortiguamiento y los coeficientes de rigidez del suelo. De lo contrario, la estructura podría experimentar deformaciones significativas en su sistema, así como momentos de segundo orden y aumentos en las derivas. Por lo tanto, es esencial realizar un análisis de interacción suelo-estructura que tenga en cuenta estas consideraciones, utilizando resortes para representar el suelo (Figura 1).

El estudio de la influencia de la interacción suelo-estructura en edificios a través de modelos dinámicos, según lo propuesto por Gallegos Ortiz (2015), permite comprender mejor las capacidades de cada modelo para capturar el comportamiento real de las estructuras. Esto no solo mejoraría la seguridad de los ocupantes en futuros proyectos de construcción en la provincia de Manabí, sino que también facilitaría el diseño de proyectos con resultados superiores en áreas vulnerables donde el suelo presenta un comportamiento desfavorable.

Figura 1. Casos de Estudio.

- a) Estructura considerando Enfoque tradicional
- b) Estructura considerando (ISE).

Metodología

Se busco evidenciar el comportamiento dinámico en estructuras convencionales de hormigón con zapatas aisladas, las cuales varían en altura de 3, 4 y 5 niveles en las áreas bajo estudio, utilizando la interacción dinámica entre suelo y estructura (ISE), y evaluando los criterios de diseño establecidos por la normativa de construcción NEC-15 de Ecuador. Se considero un estrato de suelo compuesto por arena densa y arcilla blanda para cada edificación.

Se realizo la modelización de las edificaciones (Figura 2), con los parámetros específicos del suelo para cada caso de estudio utilizando elementos finitos, mediante el uso del software Etabs, diseñado para el análisis sísmico de edificaciones.

Figura 2. Diseño geométrico de modelos de Estudio.

- a. Planta tipo de Modelos de Estudio.
- b. Elevación tipo de Modelos de Estudio.

Esta investigación empleó varios modelos dinámicos experimentales, incluyendo el de D.D. Barkan – O.A. Savinov, la Norma Rusa SNIP 2.02.05 y el de A.E. Sargsian. Además, se utilizó la metodología ASCE 41-17, de la cual se derivaron coeficientes para el amortiguamiento y la rigidez de las zapatas aisladas asignadas a los casos de estudio.(Vargas et al., 2013)

La flexibilidad de la cimentación se determinó mediante el cálculo de los coeficientes de rigidez y las características de amortiguamiento. Según se muestra en la (Figura 3), las propiedades de los resortes traslacionales y rotacionales fueron asignadas a través del elemento Spring. Sin embargo, para incorporar el efecto del amortiguamiento, se emplearon elementos Damper, a los cuales se aplicaron las respectivas propiedades.

Figura 3. Coeficientes de Amortiguamiento y Rigidez en zapatas Aisladas.

También se obtuvo los coeficientes de amortiguamiento que fueron B_z , B_x , B_y , $B_{\emptyset x}$, $B_{\emptyset y}$ y $B_{\varphi z}$. Esto implica la presencia de vibraciones de rotación en torno al eje vertical, vibraciones horizontalesrotacionales y vibraciones horizontales y verticales. A continuación, en la (tabla 1), se establece un resumen de los coeficientes de rigidez:

Tabla 1. Coeficientes de Rigidez

Descripción	Simbología
Dividaz da compressión alástica uniforma	
Rigidez de compresión elastica uniforme	K
Rigidez de desplazamiento elástico uniforme	K_x , K_y
Rigidez de compresión elástica no uniforme	$K_{\emptyset x}$, $K_{\emptyset y}$
Rigidez de desplazamiento elástico no	
uniforme	$K_{\varphi z}$

Dimensiones de planta y elevación

En cuanto a las dimensiones en planta (figura 4), de los modelos de estudio, se observa que para las direcciones "X" e "Y" se consideran 4 vanos con medidas de 4.5 m y 5 m cada uno, lo que resulta en una longitud total de 19 m. Respecto a las dimensiones en altura, se analizaron edificios de 3, 4 y 5 pisos, con una altura típica entre pisos de 3 m.

Figura 4. Casos de Estudio.

- a) Planta tipo para edificaciones Impuestas
- b) Elevación tipo para Edificaciones impuestas

Características geotécnicas para los tipos de suelo

En el área de investigación se tomó en cuenta la Ciudad de Manabí, ubicada en Ecuador, la cual presenta dos tipos de suelo con distintas características geotécnicas. A continuación, se detallan todos los parámetros geotécnicos utilizados en el análisis de interacción suelo-estructura (ISE), así como los factores, de acuerdo con NEC-SE-DS-15, que influyen en la obtención de los espectros. En la (Tabla2) se detallan dichos valores:

Tipo de Suelo	Arena	Arcilla
Tipo de Suelo	Densa	Blanda
Zona de Estudio	Manabí	Manabí
Factor de zona sísmica (Z)	0.40	0.40
Perfil de Suelo	D	Е
Factor de Reducción de Resistencia	6	6
Sísmica ®	C	C
Coef. de Importancia (I)	1	1
Coef. Configuración de Planta (Ø P)	1	1
Coef. Configuración de Elevación (Ø E)	1	1
Peso Unitario y (Kn/m ³)	16.49	12.88
Coef. de poisson v	0.30	0.39
V. de onda de corte promedio Vs(m/s)	257	163
Módulo de Elasticidad (Mpa)	27.4	10.99

Tabla 2. Parámetros Geotécnicos y Factores para Análisis ISE.

Secciones de elementos estructurales

Las construcciones propuestas en la (tabla 3), cuentan con elementos estructurales que satisfacen los estándares de diseño requeridos por la NEC-15, para resistir cargas dinámicas. En cuanto a las losas de entrepiso y techo, se emplea una losa nervada bidireccional con un espesor de 0.25 m.

Nivel	Sección Vigas (m)		Sección Columnas (m)	
INIVEI	Dirección X	Dirección Y	Externas	Internas
1	0.35 x 0.50	0.35 x 0.50	0.60 x 0.60	0.60 x 0.60
2 - 3	0.35 x 0.45	0.35 x 0.45	0.50 x 0.50	0.50 x 0.50
Seccion	nes de element	tos estructurale	es (Edificio d	e 4 niveles)
Nivel	Sección Vigas (m)		Sección Col	umnas (m)
I VIVCI	Dirección X	Dirección Y	Externas	Internas
1	0.35 x 0.50	0.35 x 0.50	0.65 x 0.65	0.65 x 0.65
2,3,4	0.35 x 0.45	0.35 x 0.45	0.55 x 0.55	0.55 x 0.55
Secciones de elementos estructurales (Edificio de 5 niveles)				
Nivel	Sección Viga	as (m)	Sección Col	umnas (m)
111101	Dirección X	Dirección Y	Externas	Internas
1	0.40 x 0.50	0.40 x 0.50	0.75 x 0.75	0.75 x 0.75
2-3-4-	0.40 x 0.45	0.40 x 0.45	0.65 x 0.65	0.65 x 0.65
5	5.10 A 0.15	5.10 A 0.10	0.00 A 0.00	0.00 A 0.00

Tabla 3. Secciones de Elementos para Modelos de Estudio.

 Secciones de elementos estructurales (Edificio de 3 niveles)

La asignación de rigidez y amortiguamiento en cada modelo dinámico con interacción sueloestructura se llevó a cabo en distintas áreas del sistema de fundación, incluyendo las esquinas, los laterales y el centro. De esta forma, toda la rigidez del sistema se asignó a la base en cada una de las columnas. A continuación, en la (tabla 4), se presenta la geometría de las zapatas de fundación, donde (hf) representa el nivel de desplante para cada caso.

Tipo de Suelo	Nivel de	Sección de Zapa	Uf(m)		
Piso		Esquineras	Laterales	Centrales	111(111)
	3	$27 \times 27 \times 0.25$	2.75 x 2.75 x	3.25 x 3.25 x	15
Arena Densa	3	2.1 X 2.1 X 0.55	0.35	0.35	1.3
Y	1	$3.0 \times 2.0 \times 0.40$	3.35 x 3.35 x	3.70 x 3.70 x	1.0
Arcilla	4	5.0 X 5.0 X 0.40	0.40	0.40	1.0
Blanda	5	3.20 x 3.20 x	3.50 x 3.50 x	3.85 x 3.85 x	2.25
3	0.45	0.45	0.45	2.23	

Tabla 4. Geometría de Zapatas para modelos de Estudio.

Acción sísmica

Respecto a la fuerza sísmica en dirección X e Y, se colocaron por medio de espectros de diseño que se desarrollarán según normativa ecuatoriana NEC-15, para los dos tipos de suelo considerados en este estudio. En la (figura. 5 y 6), se muestran los espectros que se utilizan para el desarrollo de los modelos estructurales.

Figura 5. Espectro de Diseño obtenido para Arena Densa

Figura 6. Espectro de Diseño obtenido para Arcilla Blanda.

Verificación de cortante en la base

Los valores de la fuerza cortante se encuentran establecido en la (tabla 5), en el primer entrepiso del edificio debe ser al menos el 85% de la cortante calculada mediante el método estático. Si el valor de la fuerza cortante dinámica es menor que el estático, los valores de diseño deben multiplicarse por el factor VESTÁTICO/VDINÁMICO.

Tipo de Suelo	Tipo de Estructura	V _	Dinámico	85 % V_Estático	Control
Tipo de Suelo Tipo de Estructur	Tipo de Estructura	(Ton)		(Ton)	Control

 Tabla 5. Verificación de Cortante en la Base

		Sismo	Sismo	Sismo	Sismo	Sismo	Sismo
		Х	Y	Х	Y	Х	Y
	3 niveles	155.02	155.02	154.17	154.17	Cumple	Cumple
Arena Densa	4 niveles	210.92	210.92	209.45	209.45	Cumple	Cumple
	5 niveles	284.14	284.14	282.01	282.01	Cumple	Cumple
	3 niveles	159.33	159.33	155.29	155.29	Cumple	Cumple
Arcilla Blanda	4 niveles	214.73	214.73	213.23	213.23	Cumple	Cumple
	5 niveles	289.29	289.29	287.1	287.10	Cumple	OK

Control de Derivas Inelásticas de Piso.

Una vez que las derivas (tabla 6 y 7), se han evaluado y están dentro de los máximos permitidos $\Delta_m = 0.00444$ se pude ver que las secciones transversales propuestas y su disposición es correcta.

$$\Delta m = \frac{0.02}{0.75 * R} = \frac{0.02}{0.75 * 6} = 0.00444$$

	13	0.000971
5 niveles	0	0
	4	0.001075
	7	0.001836
	10	0.001819
	13	0.001436
	16	0.000947

Figura 7. Max. Drift para Arena

Densa.

Modelo	de Altura	Max
Estudio	(m)	Drift
	0	0
2 niveles	4	0.000976
5 111 veles	7	0.001348
	10	0.000933
	0	0
4 niveles	4	0.001136
	7	0.001771
	10	0.001537
	13	0.000987
	0	0
5 niveles	4	0.001095
	7	0.001869
	10	0.001852

|--|

189Vol. 10, núm. 2. Abril-Junio, 2024, pp. 177-211Fabian Alberto Macas Jaramillo, Kevin Ricardo Proaño Viscarra

13	0.001461
16	0.000964

Figura 8. Max. Drift para Arcilla

blanda

Interacción Suelo – Estructura.

En este estudio se utilizaron varios modelos dinámicos experimentales, incluyendo el desarrollado por D.D. Barkan – O.A. Savinov, la Norma Rusa SNIP 2.02.05 y el de A.E. Sargsian. También se empleó el modelo de la normativa americana ASCE 41-17, de los cuales se derivaron coeficientes para el amortiguamiento y la rigidez de las zapatas aisladas, asignados a los casos de estudio.

En cuanto al primer modelo dinámico, se fundamenta en la interacción entre la base de la fundación y la cimentación, representando un proceso teórico-experimental mediante vibración forzada. Por otro lado, el segundo modelo dinámico integra todos los parámetros de suelo, masas y rigideces para determinar los coeficientes de amortiguamiento y rigidez. En cuanto al tercer modelo dinámico, se enfoca en analizar las rigideces basadas en la geometría de la cimentación y las velocidades de propagación de ondas en el suelo, concebido con propósitos académicos. Finalmente, el último modelo dinámico no es experimental, sino que sigue las directrices de la norma americana ASCE 41-17, que recomienda correlacionar el tipo de suelo con la demanda sísmica para obtener los coeficientes de rigidez.

Modelo D.D. Barkan – O.A. Savinov.

Las respectivas fórmulas para obtener los coeficientes de rotación y desplazamiento se muestran en la (figura 9):

N°_ Ec.	Coef. De Desplazamiento y Rotaciòn en la Base.	Simbologìa
Ec. (1)	Ec. (1) $C_{z} = C_{a} [1 + \frac{2(a+b)}{c}] \frac{p}{p}$	Cx: Coeficiente de desplazamiento elástico uniforme
	$\Delta A = \sqrt{p_o}$	Δ: Coeficiente empírico igual a 1 m-1
Ec. (2)	Ec. (2) $C_{-} = D_{-} [1 + \frac{2(a+b)}{2}] \sqrt{\frac{p}{2}}$	Cz, Cox, Coy: Coeficientes de compresión elástica uniforme y no uniforme
	$\Delta A = \sqrt{p_o}$	p: Presión estática
	Ec. (3) $C_{\varphi y} = C_o [1 + \frac{2(b+3a)}{\Delta A}] \sqrt{\frac{p}{p_o}}$	Do=Coeficiente
Ec. (3)		v: Coeficiente de poisson del suelo
		a, b: Dimensiones de la cimentación en los ejes X e Y
Ec. (4)	$C_{\varphi x} = C_o [1 + \frac{2(a+3b)}{\Delta A}] \sqrt{\frac{p}{p_o}}$	respectivamente.
Ec. (5)	p= Peso_{edif+}Peso_{fundc} Area _{fund}	Co: Coeficiente que se obtiene en la tabla 9 de la referencia (Villarreal, G. 2017), determinado a través de ensayos experimentales para po=0.2 kg/cm2; Para arcilla blanda Co=0.8 kg/cm3.
Ec. (6)	$\boldsymbol{D}_o = \frac{1-v}{1-0.5v} \boldsymbol{C}_o$	

Figura 9. Coeficientes de rotación y desplazamiento en la base.

Las respectivas fórmulas para los coeficientes de rigidez de la cimentación para este modelo se muestran en la (figura 10):

N°_Ec.	Coef. Rigidez	Simbologìa
Ec. (7)	$K_z = C_z A$	A: Área de la base de la cimentación
Ec.(8)	$K_x = K_y = C_x A$	
Ec.(9)	$K_{\varphi y} = C_{\varphi y} l_y$	- IX, IV: Momentos de inercia de la
Ec.(10)	$K_{\varphi x} = C_{\varphi x} I_x$	- empirication respecto a los ejes xe y

Figura 10. Coeficientes de Rigidez para el modelo D.D. Barkan – O.A. Savinov.

Modelo Norma Rusa SNIP 2.02.05

Las respectivas fórmulas para los coeficientes de compresión elástica uniforme y no uniforme, desplazamiento, se muestran en las (figuras 11 y 12):

N°_Ec.	Coef. De Compresion Elastica Uniforme	Simbología
	4	bo: Coeficiente de corrección de unidad de medida m-1, para el artículo se adopta igual a 1.5.
Ec. (11)	$C_z = b_o E \left[1 + \sqrt{\frac{A_{10}}{A}} \right]$	E: Módulo de elasticidad del suelo
		A10: 10 m2
		A: Área de la cimentación

Figura 11. Coeficiente de compresión elástica Uniforme.

N°_Ec.	Coef. De Desplazamiento y Compresiòn Elastica no Uniforme.	Simbología
Ec. (12)	$C_x = 0.7C_z$	Cx: Coeficiente de desplazamiento elástico uniforme
Ec. (13)	$C_{\psi z} = C_z$	Cz, Cox, Coy: Coeficientes de compresión elástica uniforme y no
Ec. (14)	$C_{\varphi x} = C_{\varphi y} = 2C_z$	uniforme

Figura 12. Coeficientes Compresión elástico no Uniforme y Desplazamiento.

Las respectivas fórmulas para los coeficientes de rigidez que está dentro de la Norma Rusa se muestran en la (figura 13):

N°_Ec.	Coef. De Rigidez	Simbología
Ec. (15)	$K_z = C_z A$	A: Área de la cimentación
Ec. (16)	$K_x = K_y = C_x A$	T T N A A A A A A A A A A
Ec. (17)	$K_{\psi z} = C_{\psi z} I_Z$	IX, IV: Momento de inercia de la cimentación
Ec. (18)	$K_{\varphi y} = C_{\varphi y} I_y$	
Ec. (19)	$K_{\varphi x} = C_{\varphi x} I_x$	Iz: Momento polar de inercia

Figura 13. Coeficientes de Rigidez para el modelo Norma Rusa SNIP 2.02.05

Las respectivas fórmulas para las amortiguaciones relativas para las vibraciones horizontales y rotacionales dentro de este modelo se muestran en la (figura 14):

N°_Ec.	Amortiguaciòn Relativa
Ec. (20)	$\boldsymbol{\beta}_{\psi z} = 0.3 \beta_z$
Ec. (21)	$\boldsymbol{\beta}_{\boldsymbol{\varphi}x} = \boldsymbol{\beta}_{\boldsymbol{\varphi}y} = 0.5\beta_z$
Ec. (22)	$\beta_x = 0.6\beta_z$

Figura 14. Amortiguaciones Relativas.

:

Finalmente, las respectivas fórmulas para el sistema suelo fundación, con sus características de amortiguamiento, se muestran en la (figura 15):

Figura 15. Amortiguamiento del sistema suelo fundación para el modelo Norma Rusa SNIP 2.02.05

Modelo A.E. Sargsian

Las respectivas fórmulas para los coeficientes de rigidez establecidos para el modelo A.E. Sargsian se muestran en (Figura 16):

N°_Ec.	Coef. De Rigidez	Simbología
	$28.8(1 + u^2) = C^{-2} \sqrt{4}$	ρ: Densidad del suelo de fundación.
Ec. (28)	$K_r = \frac{28.8(1-u^2)\rho c_2 \sqrt{A}}{(1-u^2)^2}$	A: Área de la base de la cimentación
	$\pi (7 - 8u)$	
- (22)	8.52 <i>p</i> C ₂ ² I	la cimentación respecto al eje horizontal.
Ec. (29)	$K_{\varphi} = \frac{1}{\sqrt{\pi}(1-u)\sqrt{A}}$	A 0.022
		$\Phi = 0.833$
Fc (30)	$\kappa = \frac{\rho C_1^2 \sqrt{A}}{\Lambda}$	C1: Velocidad de propagación de las ondas
LC. (30)	$\Phi(1-u^2)$	longitudinales en el suelo de fundación.
	(1-u)E	_
Ec. (31)	$C_1^2 = \frac{1}{(1+u)(1-2u)\rho}$	C2: Velocidad de propagación de las ondas
	E E	
Ec. (32)	$c_2 = \frac{1}{2(1+u)\rho}$	u: Coeficiente de Poisson del suelo

Figura 16. Coeficientes de Rigidez para el modelo A.E. Sargsian

Modelo Norma Asce 41-17

El enfoque sugerido por la norma ASCE 41-17 de Estados Unidos emplea el valor de G en sus fórmulas para determinar el factor de rigidez. Sin embargo, debido a la escasez de análisis de respuesta sísmica del sitio, las pautas del código actúan como una referencia (Figura 17) para vincular la demanda sísmica con el tipo de suelo.(ASCE, 2016)

_	Reduction Factor (G/Gmax)				
Site Class	Sds/2.5				
	≤0.1	0.40	≥0.8		
А	1	1	1		
В	1	0.95	0.9		
С	0.95	0.75	0.6		
D	0.90	0.50	0.10		
E	0.60	0.05	(*)		
F	(*)	(*)	(*)		

Figura 17. Valores en Reducción de Modulo de Corte.

20.

Análisis interacción suelo-estructura en una zona de riesgo con cimentación de zapatas aisladas. Manabí, Ecuador

Con estos datos de entrada para este modelo, calculamos las rigideces de la cimentación en la superficie del terreno, cuyas fórmulas se presentan en la (figura 18),

N°_Ec.	Rigideces de Fundaciòn en la Superficie	Grados de Libertad	
Ec. (33)	$K_{xsur} = \frac{G * B}{2 - v} \left(3.4 \left(\frac{L}{B}\right)^{0.65} + 1.20\right)$	Traslaciòn a lo largo del Eje X	
Ec. (34)	$K_{ysur} = \frac{G * B}{2 - v} \left(3.4 \left(\frac{L}{B}\right)^{0.65} + 0.4 \frac{L}{B} + 0.8\right)$	Traslaciòn a lo largo del Eje y	\wedge
Ec. (35)	$K_{zsur} = \frac{G * B}{2 - v} (1.55 (\frac{L}{B})^{0.75} + 0.8)$	Traslaciòn alrededor del Eje z	pr bottom
Ec. (36)	$K_{xxsur} = \frac{G * B^3}{1 - v} \left(0.4 \left(\frac{L}{B}\right) + 0.1 \right)$	Balanceo alrededor del Eje X	
Ec. (37)	$K_{yysur} = \frac{G * B^3}{1 - v} \left(0.47 \left(\frac{L}{B}\right)^{2.4} + 0.034\right)$	Balanceo alrededor del Eje y	1 A
Ec. (38)	$K_{zzsur} = GB^3 \left(0.53 \left(\frac{L}{B}\right)^{2.45} + 0.51\right)$	Torsiòn alrededor del Eje z	_

Figura 18. Rigideces de fundación en la Superficie. ASCE. (2017).

Utilizando estos parámetros, se lleva a cabo la corrección por los factores de empotramiento del terreno, cuyas fórmulas se presentan en las (figuras 19 y 20),

Figura 19. Factores para Corrección en empotramiento. ASCE. (2017).

N°_Ec.	Factores de Correción por Empotramiento.	Grados de Libertad
Ec. (39)	$Bx = (1 + 0.21\sqrt{\frac{D}{B}})(1 + 1.6(\frac{h * d * (B + L)}{B * L^2})^{0.4})$	Traslaciòn a lo largo del Eje X
Ec. (40)	$By = (1 + 0.21 \sqrt{\frac{D}{B}})(1 + 1.6(\frac{h * d * (B + L)}{L * B^2})^{0.4})$	Traslaciòn a lo largo del Eje y
Ec. (41)	$Bz = (1 + \frac{1}{21} * \frac{D}{B})(2 + 2.6\left(\frac{B}{L}\right))(1 + 0.32\left(\frac{d(B+L)}{B*L}\right)^{\frac{2}{3}})$	Traslaciòn alrededor del Eje z
Ec. (42)	$Bxx = (1+2.5*\frac{d}{B})((1+\frac{2d}{B}*\left(\frac{d}{D}\right)^{-0.2})*(\sqrt{\frac{B}{L}})$	Balanceo alrededor del Eje X
Ec. (43)	$Byy = (1 + 1.4 * \frac{d}{L})^{0.6} * 1.5 + 3.7(\frac{d}{L})^{1.9}((\frac{d}{D})^{-0.6})$	Balanceo alrededor del Eje y
Ec. (44)	$Bzz = (1 + 2.6\left(1 + \frac{B}{L}\right) * (\frac{d}{B})^{0.9})$	Torsiòn alrededor del Eje z

Factores para Corrección en empotramiento. ASCE. (2017).

Figura

Coeficientes de rigidez y amortiguamiento.

En la (tabla 8 y 9), se muestra los valores obtenidos para coeficientes de rigidez obtenidos por el modelo *experimental Modelo D.D. Barkan – O.A. Savinov* para los dos tipos de suelo:

Tabla 8. Coeficientes de rigidez modelo dinámico D.D. Barkan, O.A Savinov en

 Arena Densa

Rigidez	Tipo de Suelo	Tipo de Estructura	Zona de Zapatas		
			Esquineras	Laterales	Centrales
Ky Ky		3 niveles	24617.06	34672.313	51569.313
(Ton/m)	Arena Densa	4 niveles	30275	44933.693	67874.39
(1011/11)		5 niveles	35966.4	52789.75	80167.803
K7		3 niveles	30927.284	41452.375	61247.75
(Ton/m)	Arena Densa	4 niveles	37979	53245.973	81822.61
(1011/111)		5 niveles	45059.52	63032	109659.598
Kox	Arena Densa	3 niveles	30874.153	40614.063	91589.718
Kψx (Ton.m)		4 niveles	44940.5	80682.568	118777.147
		5 niveles	60949.457	102931.203	167684.283
Køy (Ton.m)	Arena Densa	3 niveles	30574.153	41614.063	107263.172
		4 niveles	44940.5	80682.568	124001.843
		5 niveles	60149.457	103931.203	246887.384

Tabla 9. Coeficientes de rigidez modelo dinámico D.D. Barkan, O.A Savinov en

 Arcilla blanda

Rigidez	Tipo de Suelo	Tipo de Estructura	Zona de Zapatas		
			Esquineras	Laterales	Centrales
Kx, Ky	Arcilla Blanda	3 niveles	12683.33	18049.938	28680.625
(Ton/m)		4 niveles	15704	23532.385	37785.03

		5 niveles	18742.72	27726.25	42133.475
Kz	Arcilla Blanda	3 niveles	17239.58	24402.438	38567.125
(Ton/m)		4 niveles	21266	31713.588	48037.58
(1011/111)		5 niveles	22316.8	37305.75	56511.3
Κων	Arcilla Blanda	3 niveles	16701.414	24493.069	53044.627
(Ton.m)		4 niveles	23250.75	46250.181	84024.437
		5 niveles	31943.795	58962.474	106253.393
Κων		3 niveles	14701.414	23493.069	58578.955
Kψy (Ton.m)	Arcilla Blanda	4 niveles	21250.75	45250.181	92715.339
		5 niveles	31943.795	57962.474	108221.362

En la (tabla 10 y 11), se muestra los valores obtenidos para coeficientes de rigidez y coeficientes de amortiguamiento (tabla 12 y 13) obtenidos por el modelo *experimental Modelo Norma Rusa SNIP* 2.02.05 para los dos tipos de suelo.

Tabla 10. Coeficientes de Rigidez modelo dinámico Norma Rusa SNIP 2.02.05-87 para

 Arena Densa

Tipo de Suelo	Tipo de Estructura	Zona de Zapatas		
	Tipo de Estructuru	Esquineras	Laterales	Centrales
	3 niveles	47130.238	48439.648	62369.975
Arena Densa	4 niveles	55214.762	65338.489	76207.211
	5 niveles	60908.525	70905.289	81093.296
Arena Densa	3 niveles	67757.482	70628.069	90528.536
	4 niveles	81306.802	93769.269	100296.016
	5 niveles	85440.749	101293.27	107276.136
Arena Densa	3 niveles	82540.341	88020.795	149367.944
	4 niveles	110460.204	167258.021	241658.744
	Tipo de Suelo Arena Densa Arena Densa Arena Densa	Tipo de SueloTipo de EstructuraArena Densa3 niveles4 niveles5 niveles5 niveles3 nivelesArena Densa4 niveles5 niveles5 niveles4 niveles5 niveles4 niveles4 niveles	Tipo de SueloTipo de EstructuraZona de Zap EsquinerasArena Densa3 niveles47130.238Arena Densa4 niveles55214.7625 niveles60908.525Arena Densa3 niveles67757.482Arena Densa4 niveles81306.8025 niveles85440.749Arena Densa3 niveles82540.341Arena Densa110460.204	Tipo de SueioZona de ZautasFigo de SueioEsquinerasLateralesArena Densa3 niveles47130.23848439.6484 niveles55214.76265338.4895 niveles60908.52570905.289Arena Densa3 niveles67757.48270628.0694 niveles81306.80293769.2695 niveles85440.749101293.27Arena Densa3 niveles82540.34188020.795Arena Densa1010460.204167258.021

		5 niveles	140938.879	196807.092	279720.922
kov		3 niveles	82540.341	88020.795	149367.944
κφy (Ton.m)	Arena Densa	4 niveles	110460.204	167258.021	241658.744
(1011.111)		5 niveles	140938.879	206807.092	279720.922
Kwz		3 niveles	82540.341	88020.795	149367.944
κψz (Ton.m)	Arena Densa	4 niveles	110460.204	167258.021	241658.744
(100000)		5 niveles	140938.879	206807.092	279720.922

Tabla 11.	Coeficientes	de Rigidez	modelo	dinámico	Norma	Rusa	SNIP	2.02.05-87	para
Arcilla Bla	nda								

Zona de Zapatas			
Centrales			
22529.607			
27885.803			
30777.135			
31042.296			
40694.004			
43395.908			
60689.042			
96413.485			
102146.807			
60689.042			
96413.485			
102146.807			
60689.042			

Kψz	4 niveles	45628.414	67614.034	96413.485
(Ton.m)	5 niveles	57426.272	80052.055	102146.807

Finalmente, las características de amortiguamiento del sistema suelo fundación son las siguientes:

Coeficiente	Tipo de Suelo	Tipo de Estructura	Zona de Zapatas				
osenenene			Esquineras	Laterales	Centrales		
By By		3 niveles	126.04	130.974	182.713		
Ton s /m	Arena Densa	4 niveles	166.615	207.619	253.173		
		5 niveles	200.989	240.459	291.065		
Bz		3 niveles	251.09	260.907	363.972		
Ton s /m	Arena Densa	4 niveles	331.904	413.588	504.332		
		5 niveles	400.38	479.006	579.816		
Box Boy		3 niveles	111.427	119.974	231.732		
Dφx, Dφy Ton s m	Arena Densa	4 niveles	182.17	281.193	416.241		
1011.5.111		5 niveles	250.962	357.013	520.078		
Burz		3 niveles	91.523	98.656	192.223		
Ton s m	Arena Densa	4 niveles	149.357	232.074	345.215		
1011.8.111		5 niveles	204.995	293.391	429.716		

Tabla 12. Amortiguamiento del sistema suelo fundación en Arena Densa

Tabla 13. Amortiguamiento del sistema suelo fundación en Arcilla Blanda

Coeficiente	Tipo de Suelo	Tipo de Estructura	Zona de Zapatas			
Coefficiente	Tipo de Suelo	Tipo de Estructura	Esquineras	Laterales	Centrales	
Ry Ry		3 niveles	61.835	62.119	87.153	
Tons /m	Arcilla Blanda	4 niveles	81.304	98.953	120.978	
1011.5 /111		5 niveles	95.843	114.897	139.183	

R ₇		3 niveles	120.186	124.737	174.605
D2 Ton.s /m	Arcilla Blanda	4 niveles	158.97	198.111	241.985
		5 niveles	191.916	230.873	278.25
Βωχ Βων		3 niveles	52.779	56.818	110.803
Dφx, Dφy Ton.s.m	Arcilla Blanda	4 niveles	86.802	134.373	200.543
		5 niveles	119.921	171.074	250.48
Durz		3 niveles	43.172	46.544	91.742
Ton.s.m	Arcilla Blanda	4 niveles	70.987	110.726	155.323
		5 niveles	97.773	140.41	205.959

En la (tabla 14 y 15), se muestra los valores obtenidos para coeficientes de rigidez obtenidos por el modelo *experimental A.E. Sargsian* para los dos tipos de suelo.

Tabla 14.	Coeficientes	de	rigidez	modelo	dinámico	A.E.	SARGSIAN	en	Arena
Densa.									

Rigidez	Tipo de Suelo	Tipo de Estructura	Zona de Zapatas				
Inglacz	Tipo de Suelo	Tipo de Estidetata	Esquineras	Laterales	Centrales		
		3 niveles	5401.1	5501.13	6501.33		
(Ton/m)	Arena Densa	4 niveles	6001.23	6701.37	7401.52		
(1011,111)		5 niveles	6401.31	7001.43	7701.58		
Kz		3 niveles	15305.76	15589.2	18423.6		
(Ton/m)	Arena Densa	4 niveles	17006.4	18990.48	20974.56		
(1011)		5 niveles	18140.16	19840.8	21824.88		
Kox		3 niveles	12564.21	13275.27	21912.67		
πφx (Ton.m)	Arena Densa	4 niveles	17234.91	23998.00	32333.34		
		5 niveles	20916.8	27368.4	36427.34		
	Arena Densa	3 niveles	12564.21	13275.27	21912.67		

Кфу	4 niveles	17234.91	23998.00	32333.34
(Ton.m)	5 niveles	20916.8	27368.4	36427.34

Tabla 15.	Coeficientes d	e rigidez	modelo	dinámico	A.E.	SARGSIAN	en	Arcilla
Blanda.								

Rigidez	Tipo de Suelo	Tipo de Estructura	Zona de Zapatas			
Inglacz	Tipo de Buelo		Esquineras	Laterales	Centrales	
Ky Ky		3 niveles	2047.54	2087.31	2485	
(Ton/m)	Arcilla Blanda	4 niveles	2186.15	2564.44	2842.92	
(1011/111)		5 niveles	2345.23	2683.85	3062.23	
K7		3 niveles	9077.6	9155.48	10938.3	
IXZ (Ton/m)	Arcilla Blanda	4 niveles	1086.89	10274.86	11452.83	
		5 niveles	10770.02	10779.71	11957.68	
Kox		3 niveles	5056.78	5349.66	8895.43	
ιτφλ (Ton.m)	Arcilla Blanda	4 niveles	7075.14	9751.88	12273.24	
(101111)		5 niveles	8486.61	10235.07	13953.88	
Κων		3 niveles	5057.78	5349.66	8895.43	
Кфу (Ton.m)	Arcilla Blanda	4 niveles	7075.14	9751.88	12273.24	
		5 niveles	8486.61	10235.07	13953.88	

En la (tabla 16 y 17), se muestra los valores obtenidos para coeficientes de rigidez y amortiguamiento obtenidos por el modelo *Norma Asce 41-17* para los dos tipos de suelo.

Rigidez	Tipo	de Tipo	de	Zona de Zapa	itas	
Rigiuez	Suelo	Suelo Estructura		Esquineras	Laterales	Centrales
		3 niveles		54632.863	117359.483	252105.555

Tabla 16. Rigidices de fundación confinada para Arena Densa

Kx, Ky,	Arena	4 niveles	56563.364	121506.485	261013.932
Comb	Densa				
(KN/m)	Densa	5 niveles	59320.893	127430.066	273738.661
Kz Comb	Arena	3 niveles	58772.061	126251.095	271206.055
(KN/m)	Densa	4 niveles	59455.551	127719.333	274360.048
()	2 •1154	5 niveles	60400.776	129749.815	278721.824
Kyy Comb	Arena Densa	3 niveles	5018977.079	10781506.317	23160272.829
(KN.m/rad)		4 niveles	5222082.912	11217807.737	24097512.917
(111 (111) 1 444)		5 niveles	5537913.901	11896259.491	25554927.797
Kvy Comb	Arena	3 niveles	6093182.058	13089057.755	28117235.177
(KN.m/rad)	Densa	4 niveles	6331695.728	13601420.452	29217866.157
()	2 •	5 niveles	6665599.262	14318694.711	30758677.528
Kzz. Comb	Arena	3 niveles	8762292.955	18822703.385	40433955.419
(KN.m/rad)	Densa	4 niveles	9303002.813	19984228.265	42929082.939
(min.m/rad)	Dellsa	5 niveles	10097686.223	21691325.96	46596181.692

Tabla 17. Rigidices de fundación confinada para Arcilla Blanda

Rigidaz	Tipo	de	Tipo	de	Zona de Zapatas			
Rigiuez	Suelo		Estructura		Esquineras	Laterales	Centrales	
Kx, Ky,	Arcilla		3 niveles		9490.059	20600.867	43253.714	
Comb	blanda	-	4 niveles		9828.932	20328.817	44817.459	
(KN/m)	orunad		5 niveles		10412.979	21368.622	47051.113	
Kz Comb	Arcilla		3 niveles		10037.362	22709.889	50932.355	
(KN/m)	blanda		4 niveles		10165.721	22985.624	50524.673	
(5 niveles		10343.234	23366.947	51343.813	
Kxx, Comb	Arcilla		3 niveles		932561.266	2024761.238	4249487.104	
(KN.m/rad)	blanda		4 niveles		970704.435	2006698.416	4425500.302	

²⁰² Vol. 10, núm. 2. Abril-Junio, 2024, pp. 177-211 Fabian Alberto Macas Jaramillo, Kevin Ricardo Proaño Viscarra

	5 niveles	1040017.329	2134111.3	4699202.053
Kyy Comb Arcilla	3 niveles	1044296.398	2358118.189	5180402.036
(KN.m/rad) blanda	4 niveles	1089089.141	2454339.636	5387099.958
	5 niveles	1151796.05	2689043.366	5676463.526
Kzz Comb Arcilla	3 niveles	1373630.472	3065576.569	6700127.444
(KN.m/rad) blanda	4 niveles	1464566.318	3260920.238	7119754.585
() 0141144	5 niveles	1598215.089	3548017.599	7736482.249

Casos de estudio mediante interacción suelo-estructura.

Dentro de lo que se refiere a la fase de modelación de las estructuras de estudio, para el análisis de la interacción suelo estructura, se empleó el programa (**Etabs**) (Figura 22). Donde se determinó el comportamiento de los modelos de estudio ante eventos sísmicos, considerando el análisis modal espectral. Con la obtención de amortiguamientos y rigideces para los distintos modelos dinámicos propuestos, se asignó para cada modelo estructural en su base las propiedades mencionadas y se estableció tres tipos de resorte (Figura 21), laterales, centrales y de esquina en el programa.

Figura 21. Modelo de 3 Niveles con base flexible en Software ETABS.

Por lo tanto, el área marcada en naranja indica el área de influencia para los resortes de las esquinas, mientras que el área sombreada en azul representa el área de influencia de los resortes laterales, y el área sombreada en rojo corresponde al área de influencia de los resortes centrales. Finalmente, una vez que se introdujo toda esta información en el modelo, se discretizaron los valores de rigidez total de todo el sistema de cimentación para asignarlos en la base de los modelos de estudio, utilizando el concepto de área de influencia.

El proceso general implica dividir la rigidez Ki por el área total de la cimentación, y luego multiplicar este valor de rigidez distribuida (Ki/Atotal) por el área de influencia correspondiente, es decir como se presenta en la (tabla 18):

Tabla 18. Área de Influencia

Área	Tributaria	Área	tributaria	Área	tributaria
Central		Lateral		Esquina	

$$K_{centrales} = \left(\frac{k_i}{A_{total}}\right) K_{Laterales} = \left(\frac{k_i}{A_{total}}\right) \quad K_{esquina} = \left(\frac{k_i}{A_{total}}\right)$$

Área	Parcial	Área	Parcial	Área	Parcial
Central m2		Lateral m2		Esquinera m2	
210.25		130.5		20.25	

Resultados

Después de completar los diversos modelos dinámicos que consideran la interacción entre suelo y estructura en los casos de estudio propuestos, se presentan los resultados que muestran cambios en las características dinámicas de las estructuras tipo.

Periodos de Vibración

Los valores de los períodos de vibración obtenidos de modelos dinámicos experimentales y la metodología ASCE 41-17 en comparación con los modelos empotrados se muestran en la (tabla 19). Esto se aplica a las estructuras de 3, 4 y 5 niveles, considerando los diferentes tipos de suelo, como arena densa y arcilla blanda, para los casos planteados.

Tabla 19. Periodo Fundamental de vibración T (s) para los modelos de estudio.

Periodo fundamental de Vibración T(s)							
	Arena I	Densa		Arcilla	Arcilla Blanda		
Método	3	4	5	3	4	5	
	niveles	niveles	niveles	niveles	niveles	niveles	
Empotrado	0.441	0.552	0.619	0.441	0.552	0.619	
Barkan	0.467	0.575	0.648	0.484	0.592	0.667	
Norma Rusa	0.456	0.566	0.639	0.486	0.588	0.656	
A.E. Sargsian	0.532	0.636	0.726	0.616	0.723	0.825	

²⁰⁵ Vol. 10, núm. 2. Abril-Junio, 2024, pp. 177-211 Fabian Alberto Macas Jaramillo, Kevin Ricardo Proaño Viscarra

ASCE	41-					
17	0.468	0.591	0.676	0.558	0.708	0.831

Fuerzas Cortantes en la Base

Los valores de las fuerzas cortantes en la base en dirección X e Y, obtenidos de modelos dinámicos experimentales y la metodología ASCE 41-17 en comparación con los modelos empotrados se muestran en la (tabla 20). Esto se aplica a las estructuras de 3, 4 y 5 niveles, considerando los diferentes tipos de suelo, como arena densa y arcilla blanda, para los casos planteados.

Cortante en	Cortante en la base debido a Sismo X-Y (Ton)								
	Arena D	ensa (Vy	x-Vy)	Arcilla	Arcilla Blanda (Vx-Vy)				
Método	3	4	5	3	4	5			
	niveles	niveles	niveles	niveles	niveles	niveles			
Empotrado	155.02	210.92	284.14	159.33	214.33	289.29			
Barkan	159.26	215.45	290.55	165.42	221.42	299.15			
Norma									
Rusa	157.41	213.28	287.53	163.23	218.64	295.22			
A.E.									
Sargsian	165.53	224.15	304.73	175.16	236.44	322.51			
ASCE 41-									
17	158.03	214.31	288.52	167.85	225.21	303.52			

Tabla 20. Cortante Basal debido al Sismo X-Y.

Desplazamientos totales de techo

Los valores a desplazamiento total en el techo en dirección X e Y, obtenidos de modelos dinámicos experimentales y la metodología ASCE 41-17 en comparación con los modelos empotrados se muestran en la (tabla 21). Esto se aplica a las estructuras de 3, 4 y 5 niveles, considerando los diferentes tipos de suelo, como arena densa y arcilla blanda, para los casos planteados.

Desplazamien	Desplazamiento total de techo debido a sismo X-Y (10-3) (m)							
	Arena I	Densa (dx	-dy)	Arcilla	Arcilla Blanda (dx-dy)			
Método	3	4	5	3	4	5		
	niveles	niveles	niveles	niveles	niveles	niveles		
Empotrado	10.41	17.02	22.27	10.69	17.32	22.67		
Barkan	11.57	18.41	24.29	12.73	19.75	26.23		
Norma								
Rusa	11.09	17.84	23.61	12.42	19.42	26.05		
A.E.								
Sargsian	14.61	22.22	30.22	19.67	28.36	38.87		
ASCE 41-17	11.77	19.62	26.73	12.88	28.59	40.43		

 Tabla 21. Desplazamiento total de techo debido al Sismo X-Y.

Derivas de Piso

En la (tabla 22), se presentan los valores para la máxima deriva de piso de cada una de las estructuras y modelos examinados. Se emplea un valor de control para la deriva que no excede el 2%, conforme a lo estipulado en la normativa ecuatoriana (NEC-SE-DS-15), aplicable en este contexto a las estructuras de hormigón armado.

Tabla 22. Derivas de piso máximas debido al Sismo X-Y.

Derivas de piso máximas debido a sismo X-Y				
Método	Arena Densa (δx-δy)	Arcilla Blanda (δx-δy)		
1120000	3 niveles 4 niveles 5 niveles	3 niveles 4 niveles 5 niveles		

Empotrado	0.001312	0.001742	0.001836	0.001348	0.001771	0.001869
0.75*R (%)	0.590	0.784	0.826	0.607	0.797	0.841
OBS	Ok	Ok	Ok	Ok	Ok	Ok
Barkan	0.001376	0.001822	0.001954	0.001461	0.001913	0.002075
0.75*R (%)	0.619	0.820	0.879	0.657	0.861	0.934
OBS	Ok	Ok	Ok	Ok	Ok	Ok
Norma						
Rusa	0.001305	0.001788	0.001912	0.001443	0.001892	0.002056
0.75*R (%)	0.587	0.805	0.860	0.649	0.851	0.925
OBS	Ok	Ok	Ok	Ok	Ok	Ok
A.E.						
Sargsian	0.00155	0.002001	0.002244	0.002205	0.002406	0.002621
0.75*R (%)	0.698	0.900	1.010	0.992	1.083	1.179
OBS	Ok	Ok	Ok	Ok	Ok	Ok
ASCE 41-17	0.001416	0.001907	0.002087	0.001772	0.002441	0.002905
0.75*R (%)	0.637	0.858	0.939	0.797	1.098	1.307
OBS	Ok	Ok	Ok	Ok	Ok	Ok

Conclusiones

La evaluación de los resultados de los 4 enfoques empleados en este estudio revela que la interacción suelo-estructura tiene un impacto más significativo al utilizar el método experimental A.E Sargsian y el enfoque propuesto por la normativa estadounidense ASCE 41-17. En contraste, se observa una menor influencia en el método de Barkan y la Norma Rusa.

Dentro de los 4 métodos empleados en esta investigación, al incorporarse la rigidez del suelo a los modelos estructurales, el incremento del periodo fundamental se vuelve más notable conforme el número de pisos aumenta y cuando el terreno presenta una gran susceptibilidad ante escenarios de ondas sísmicas. En cuanto a derivas de piso determinadas en los casos de estudio, se puede notar que cumplen con el límite definido por la NEC-SE-DS-15, pero, se puede apreciar que debido a la interacción suelo-estructura se registra un incremento.

Respecto al área total de cimentación para los edificios de 3, 4 y 5 niveles, esta suma asciende a 361 m2. Sin embargo, al considerar solo las zapatas aisladas, se observa que ocupan el 59.53% para los edificios de 3 niveles, el 81.43% para los de 4 niveles y el 89% para los de 5 niveles, en relación con el área total de cimentación. Esto indica que, para investigaciones futuras, podría ser beneficioso explorar otros tipos de cimentación, como la platea de cimentación o pilotes, con el fin de mejorar el comportamiento sísmico de las estructuras en las condiciones mencionadas anteriormente.

Recomendaciones

Considerar la interacción suelo-estructura en el diseño radica en la seguridad y la durabilidad de la construcción. Una cimentación adecuada, precisa una compresión de cómo el suelo responderá a las cargas son fundamentales para prevenir fallas catastróficas. Esto es especialmente crucial en áreas sísmicas, donde las cargas dinámicas pueden tener un impacto significativo en las estructuras cuando no se diseña y construye correctamente.

Dentro del país de Ecuador, no hay una ley que esté vigente el uso o diseño de interacción sueloestructura. Es por esto, que la introducción de la Interacción Suelo-Estructura en los códigos de construcción de cada país es fundamental para garantizar la seguridad estructural, promover la eficiencia en el diseño, proteger el medio ambiente y cumplir con las normativas internacionales. Además, contribuye a la resiliencia ante desastres naturales y al desarrollo de una infraestructura segura y sostenible. Es una medida esencial que protege la vida y el patrimonio de las personas y asegura la calidad de la construcción en todo el mundo

Referencias

- Aguiar, R., & Ortiz, D. (2017). Analisis sismico de un edficio de 12 pisos de la ciudad de manta considerando interacción suelo estructura. Revista Internacional de Ingeniería De Estructuras., 22(3), 251–279. https://doi.org/http://dx.doi.org/10.24133/riie.v22i3.646
- ASCE. (2017). Seismic evaluation and retrofit of existing buildings. ASCE/SEI 41-17, Reston, Virginia.
- 3. Butchibabu, B., Jha, P. C., Sandeep, N., & Sivaram, Y. V. (2023). Seismic refraction tomography using underwater and land based seismic data for evaluation of foundation of

civil structures. Journal of Applied Geophysics, 210, 104934. https://doi.org/https://doi.org/10.1016/j.jappgeo.2023.104934

- Forcellini, D. (2021). Analytical fragility curves of shallow-founded structures subjected to Soil-Structure Interaction (SSI) effects. Soil Dynamics and Earthquake Engineering, 141, 10. https://doi.org/https://doi.org/10.1016/j.soildyn.2020.106487
- Gallegos Ortiz, B. (2015). Interaccion suelo estructura de Edificios, según Asce-10 y la guia Nerph-Nist-2012. 1, 3–4. https://doi.org/10.13140/RG.2.2.26875.77608
- González Acosta, J. L., Vardon, P. J., & Hicks, M. A. (2021). Study of landslides and soilstructure interaction problems using the implicit material point method. Engineering Geology, 285. https://doi.org/https://doi.org/10.1016/j.enggeo.2021.106043
- NEC. (2015). "PELIGRO SÍSMICO DISEÑO SISMO RESISTENTE". Quito, Ecuador: Dirección de Comunicación Social, MIDUVI.
- NEC-SE-GC. (2015). Norma Ecuatoriana de la Construcción, Geotecnia y Cimentaciones [Ecuadorian Construction, Geotechnics and Foundations Standard]. Recuperado de https://online.portoviejo.gob.ec/docs/nec6.pdf
- 9. NEHRP-NIST GCR 12-917-21,(2012), Soil-Structure Interaction Building Structures, Engineering Laboratory of the National Institute of Standards and Technology, Maryland.
- Ruiz García, J., & Guerrero, H. (2017). Estimation of residual displacement ratios for simple structures built on soft-soil sites. Soil Dynamics and Earthquake Engineering, 100, 555–558. https://doi.org/https://doi.org/10.1016/j.soildyn.2017.07.008
- Testori, G., Janoschka, M., Mena, A. B., & Iuorio, O. (2021). Ecuadorian housing resettlements five years after the 2016 earthquake: A critical analysis. Habitat International, 117, 102433. https://doi.org/https://doi.org/10.1016/j.habitatint.2021.102433
- 12. Vicencio, F., & Alexander, N. A. (2021). Method to evaluate the dynamic structure-soil-structure interaction of 3-D buildings arrangement due to seismic excitation. Soil Dynamics and Earthquake Engineering, 141. https://doi.org/https://doi.org/10.1016/j.soildyn.2020.106494

- Villarreal G., Cerna M., Espinoza C. (2021). Interacción sísmica sueloestructura en edificaciones con muros de ductilidad limitada sobre plateas de cimentación. Revista Internacional de Ingeniería de Estructuras, 26 (1),153-178
- Villareal, G. (2020). Interacción suelo-estructura en edificaciones con zapatas aisladas. Revista Internacional de Ingeniería De Estructuras., 25(3), 311–332.
- 15. Vargas, Y. F., Pujades, L. G., Barbat, A. H., & Hurtado, J. E. (2013). Evaluación probabilista de la capacidad, fragilidad y daño sísmico de edificios de hormigón armado. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 29(2), 63–78. https://doi.org/https://doi.org/10.1016/j.rimni.2013.04.003
- Xu, F., Bao, C., Ma, X., Zhang, Y., Sing Lim, K., Zhang, Y., Wang, H., & Hu, J. (2022).
 Shaking table test on seismic response of a planar irregular structure with differential settlements of foundation. Structures, 46, 988–999. https://doi.org/https://doi.org/10.1016/j.istruc.2022.10.090
- Yépez, F., & Yépez, O. (2017). Role of construction materials in the collapse of R/C buildings after Mw 7.8 Pedernales – Ecuador earthquake, April 2016. Case Studies in Structural Engineering, 7, 24–31. https://doi.org/https://doi.org/10.1016/j.csse.2016.12.001

© 2024 por los autores. Este artículo es de acceso abierto y distribuido según los términos y condiciones de la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/).]