Detección automótica del nivel de crimen basado en el anólisis de puntos calientes en la ciudad de Guayaquil

Autores/as

  • Juan C. García-Plúa Escuela Superior Politécnica del Litoral.
  • Wellington R. Villota-Oyarvide Universidad de Guayaquil.
  • Julio G. Litardo-Unda Universidad de Guayaquil.

DOI:

https://doi.org/10.23857/dc.v3i2.428

Palabras clave:

Crimen, clasificación, redes neuronales, regresión.

Resumen

La detección temprana de los lugares del delito es importante para que las ciudades puedan tomar decisiones preventivas que permitan aumentar la percepción de la seguridad píºblica. En este contexto, tomando datos históricos de crí­menes ocurridos en la ciudad de Guayaquil se realizó exitosamente un proceso de clasificación que mide a un determinado punto geogrófico en cuatro niveles de delito: extremo, alto, moderado y bajo. Proporcionando sólo la dirección de un lugar en la ciudad, esta es fócilmente es convertida en coordenadas polares expresadas como latitud y longitud para predecir automóticamente el nivel de delito de ese lugar con un 93 por ciento de precisión.

Biografía del autor/a

Juan C. García-Plúa, Escuela Superior Politécnica del Litoral.

Cursando PhD en Ciencias de la Computación Aplicada; Magister en Sistemas de Información Gerencial; Magister en Administración de Empresas; Diplomado Superior en Administración de Empresas; Licenciado en Sistemas de Información; Escuela Superior Politécnica del Litoral, Ecuador

Wellington R. Villota-Oyarvide, Universidad de Guayaquil.

Magister en Diseño y Evaluación de Modelos Educativos; Diploma Superior en Diseño y Gestión Curricular; Diploma Superior en Modelos Educativos; Licenciado en Sistemas de Información; Universidad de Guayaquil, Ecuador.

Julio G. Litardo-Unda, Universidad de Guayaquil.

Magister en Sistemas de Información Gerencial; Ingeniero en Sistemas Computacionales;  Universidad  de Guayaquil, Ecuador.

Citas

Abbasi, A., Chen, H. & Salem, A., 2008. Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums. ACM Transactions on Information Systems …, 26(3), pp.1–34. Available at: http://dl.acm.org/citation.cfm?id=1361685%5Cnhttp://portal.acm.org/citation.cfm?doid=1361684.1361685.

Azeez, J. & Aravindhar, D.J., 2015. Hybrid approach to crime prediction using deep learning. 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp.1701–1710. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7275858.

Bogomolov, A. et al., 2014. Once Upon a Crime. Proceedings of the 16th International Conference on Multimodal Interaction - ICMI ’14, pp.427–434. Available at: http://dx.doi.org/10.1145/2663204.2663254.%5Cnhttp://dl.acm.org/citation.cfm?doid=2663204.2663254.

Cesario, E., Catlett, C. & Talia, D., 2016. Forecasting Crimes Using Autoregressive Models. Proceedings - 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, DASC 2016, 2016 IEEE 14th International Conference on Pervasive Intelligence and Computing, PICom 2016, 2016 IEEE 2nd International Conference on Big Data.

Chainey, S., Tompson, L. & Uhlig, S., 2008. The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime. Security Journal, 21, pp.4–28. Available at: http://discovery.ucl.ac.uk/112873/.

Chandra, B., Gupta, M. & Gupta, M.P., 2008. A multivariate time series clustering approach for crime trends prediction. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp.892–896.

Davies, T.P. & Bishop, S.R., 2013. Modelling patterns of burglary on street networks. Crime Science, 2(1), p.10. Available at: http://www.crimesciencejournal.com/content/2/1/10.

Eck, J.E. & Weisburd, D.L., 1995. Crime Places in Crime Theory. Crime Prevention Studies, 4, pp.1–33. Available at: http://www.popcenter.org/library/CrimePrevention/Volume_04/01-EckWeisburd.pdf.

Fernando MaldonadoAlberto OchoaJulio ArreolaDaniel AzpeitiaAriel De la TorreDiego CanalesSaíºl González, 2013. Intelligent Application to Reduce Transit Accidents in a City Using Cultural Algorithms. Advances in Intelligent Systems and Computing.

Google Inc., 2017. Google Geolocation API. Available at: https://developers.google.com/maps/documentation/geolocation/intro [Accessed January 1, 2017].

Imas Sukaesih Sitanggang; Tsamrul Fuad; Annisa, K-means clustering visualization of web-based OLAP operations for hotspot data. 2010 International Symposium on Information Technology.

Joshi, M.R., 2016. Analysis of Change in Coordinate System on Clustering. Current Trends in Advanced Computing (ICCTAC).

Kadar, C. & Cvijikj, I.P., 2014. CityWatch : The Personalized Crime Prevention Assistant. Proceedings of the 13th International Conference on Mobile and Ubiquitous Multimedia, pp.260–261.

Kianmehr, K. & Alhajj, R., 2008. Effectiveness of Support Vector Machine for Crime Hot-Spots Prediction. Applied Artificial Intelligence, 22(5), pp.433–458. Available at: http://www.tandfonline.com/doi/abs/10.1080/08839510802028405.

Mohamad No, N.M. et al., 2015. A Review on a Classification Framework for Supporting Decision Making in Crime Prevention. Journal of Artificial Intelligence, 8(1), pp.17–34. Available at: http://www.scialert.net/abstract/?doi=jai.2015.17.34.

Nisa, K.K., Andrianto, H.A. & Mardhiyyah, R., 2014. Hotspot clustering using DBSCAN algorithm and shiny web framework. Proceedings - ICACSIS 2014: 2014 International Conference on Advanced Computer Science and Information Systems, pp.129–132.

Pang, B. & Lee, L., 2008. Opinion Mining and Sentiment Analysis. Foundations & Trends in Information Retrieval, 2(1–2), pp.1–135.

Tayebi, M.A. et al., 2014. CRIMETRACER: Activity space based crime location prediction. ASONAM 2014 - Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, (Asonam), pp.472–480.

Taylor, P.J. et al., 2012. Global Urban Analysis: A Survey of Cities in Globalization, Taylor & Francis. Available at: https://books.google.com.ec/books?id=fnns3RI1xnwC.

Tollenaar, N. & van der Heijden, P.G.M., 2013. Which method predicts recidivism best?: A comparison of statistical, machine learning and data mining predictive models. Journal of the Royal Statistical Society. Series A: Statistics in Society, 176(2), pp.565–584.

United Nations, 2014. World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352), Available at: http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf.

Vural, M.S. & Gí¶k, M., 2016. Criminal prediction using Naive Bayes theory. Neural Computing and Applications. Available at: http://link.springer.com/10.1007/s00521-016-2205-z.

Yuan, G.-X. et al., 2010. A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification. The Journal of Machine Learning Research, 11, pp.3183–3234.

Zhang, N. et al., 2015. Leave me alone: App-level protection against runtime information gathering on android. Proceedings - IEEE Symposium on Security and Privacy, 2015–July, pp.915–930.

Zhang, Q. & Goncalves, B., 2016. Security Analysis and Exploitation of Arduino devices in the Internet of Things. Acm, p.6.

Zhong-Yuan Zhang, 2012. Nonnegative Matrix Factorization: Models, Algorithms and Applications. In Data Mining: Foundations and Intelligent Paradigms.

Descargas

Publicado

2017-04-30

Cómo citar

García-Plúa, J. C., Villota-Oyarvide, W. R., & Litardo-Unda, J. G. (2017). Detección automótica del nivel de crimen basado en el anólisis de puntos calientes en la ciudad de Guayaquil. Dominio De Las Ciencias, 3(2), 367–379. https://doi.org/10.23857/dc.v3i2.428

Número

Sección

Artí­culos Cientí­ficos

Artículos más leídos del mismo autor/a